Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Виды вибраций Общие требования к испытаниям

23.01.2024

В зависимости от характера колебаний различаются:

детерминированная вибрация :

Изменяется по периодическому закону;

Функция х(t), описывающая ее, изменяет значения через одинаковые интервалы времени Т (период колебания) и имеет произвольную форму (рис.3.1.а)

Если кривая x(t) изменяется с течением времени по синусоидальному закону (рис.3.1.б), то периодическая вибрация называется гармонической (в практике - синусоидальная ). Для гармонической вибрации справедливо уравнение

x(t) = A sin (wt), (3.1)

где x(t) - смещение от положения равновесия в момент t ;

А - амплитуда смещения; w = 2pf - угловая частота.

Спектр такой вибрации (рис.3.1. б) состоит из одной частоты f = 1/T .

Рис.3.1. Периодическая вибрация (а); гармоническая вибрация и ее спектр частот (б); периодическая вибрация как сумма гармонических колебаний и ее спектр частот (в)

Полигармоническое колебание - частный вид периодической вибрации;:

Наиболее распространена на практике;

Периодическое колебание разложением в ряд Фурье может быть представлено как сумма ряда гармонических колебаний с различными амплитудами и частотами (рис.3.1.в).

где k - номер гармоники; - амплитуда k - й гармоники;

Частоты всех гармоник кратны основной частоте периодического колебания;

Спектр является дискретным (линейчатым) и представлен на рис.3.1.в;

Ее часто относят с некоторыми искажениями к гармоническим колебаниям; степень искажения подсчитывается с помощью коэффициента гармоник

,

где - амплитуда i - гармоники.

Случайная вибрация :

Не может быть описана точными математическими соотношениями;

Невозможно предсказать точно значения ее параметров в ближайший момент времени;

Можно с определенной вероятностью предсказать, что мгновенное значение x(t) вибрации попадает в произвольно выбранный интервал значений от до (рис.3.2.).

Рис.3.2. Случайная вибрация

Из рис.3.2. следует, что эта вероятность равна

,

где - суммарная продолжительность нахождения амплитуды вибрации в интервале за время наблюдения t .

Для описания непрерывной случайной величины пользуются плотностью вероятности:

Формула ;

Вид функции распределения характеризует закон распределения случайной величины;

Случайная вибрация – сумма множества независимых и мало отличающихся мгновенных воздействий (подчиняется закону Гаусса);

Вибрацию можно характеризовать:

математическим ожиданием М[X] – среднее арифметическое мгновенных значений случайной вибрации за время наблюдения;

генеральной дисперсией - разброс мгновенных значений случайной вибрации относительно ее среднего значения.

Если колебательные процессы с одинаковыми M[X] и отличаются друг от друга за счет различной частоты, то случайный процесс описывается в частотной области (случайная вибрация есть сумма бесконечно большого числа гармонических колебаний). Здесь используется спектральная плотность мощности случайной вибрации в полосе частот

Широкое распространение получили методы испытаний случайной узкополосной вибрацией с переменной во времени средней частотой. Они имеют следующие преимущества:

1) возможность получения значительных уровней нагрузки с помощью менее мощного оборудования;

2) возможность применения более простой аппаратуры управления, требующей менее квалифицированного персонала.

Рис. 8. Схема управления испытаниями на узкополосную случайную вибрацию: а - спектральные плотности узкополосной и широкополосной вибрации, б - структурная схема системы: 1 - привод сканирования частоты, 2 - виброметрическая аппаратура, 3 - датчик, 4 - испытуемое изделие, 5 - вибровозбудитель, 6 - усилитель мощности; 7 - автоматический регулятор усиления, 8 - сопровождающий фильтр; 9 - генератор белого шума

Основными задачами являются определение закона изменения средней частоты во времени и закона изменения вибрации в зависимости от частоты. При определении этих законов руководствуются соображениями некоторой эквивалентности испытаний на узко- и широкополосные случайные вибрации. Она установлена, например, для испытаний на усталостную прочность, при которых требуется идентичность распределения максимумов и минимумов нагрузки при узко- и широкополосных вибрациях . Установлено

где среднеквадратичное значение виброперегрузки (по ускорению в единицах при узкополосном возбуждении. Если должно быть пропорционально VI, то градиент ускорения при испытаниях на узкопсйосную вибрацию - постоянная величина. Время испытаний при логарифмическом изменении частоты

Соответственно высшая и низшая частоты диапазона, в котором производится сканирование; время проведения испытаний при узко- и широкополосной вибрации; масштабный коэффициент.

Для воспроизведения условий, возникающих при широкополосной вибрации с равномерной спектральной плотностью в полосе частот (см. рис. 8, а), градиент ускорения вычисляют по формуле

где На средний коэффициент передачи вибросистемы; ее передаточная функция.

В соответствии с (18) и (19) режим испытаний на узкополосную вибрацию определяется коэффициентами Коэффициент может изменяться от 1,14 (при простых испытаниях) до 3,3 (при ускоренных испытаниях). Коэффициент изменяется соответственно в пределах

На рис. 8, а показаны спектральные плотности узкополосных и широкополосных вибраций. Наклон штриховой линии определяющий скорость нарастания спектральной плотности при изменении средней частоты равен квадрату градиента ускорения.

Известно большое число промышленных систем автоматизации испытании на узкополосную случайную вибрацию . Они построены по схеме, показанной на рис. 8, б. Узкополосный случайный процесс с переменной во времени центральной частотой получается с помощью генератора белого шума и сопровождающего фильтра, центральная частота которого изменяется приводом сканировании частоты Скорость вращения регулируется в широких пределах. Среднеквадратичное значение узкополосных вибраций на выходе вибросистемы стабилизируется с помощью системы автоматической регулировки усиления (АРУ). Сигнал обратной свизи АРУ поступает с выхода виброметрической аппаратуры


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5



стр. 6



стр. 7



стр. 8



стр. 9



стр. 10



стр. 11



стр. 12



стр. 13



стр. 14



стр. 15



стр. 16

Каждый из последних трех разделов представляет собой законченный метод испытания с рекомендуемыми методами подтверждения, содержащимися в приложениях.

Все сведения, которые требуются разработчику соответствующей НТД. приведены в испытании Fd. Сведения, необходимые ннженеру-испытателю. приведены в испытаниях Fda. Fdb и Fdc (в зависимости от того, какое из них требуется). Дополнительная информация будет представлена в приложениях Д-F настоящего стандарта*.

Несмотря на то, что разработчика соответствующей НТД интересует только испытание Fd. а ннженера-испытателя - определенный метод, выбранный из испытаний Fda. Fdb и Fdc. настоятельно рекомендуется, чтобы все заинтересованные лица ознакомились с настоящим стандартом.

В настоящем стандарте представлено только приложение А. остальные находятся на рассмотрении. Издание официальное Перепечатка воспрещена

© Издательство стандартов, 1989 © Стандарт и нформ. 2006

1.2. Теория испытания

Для всех методов испытаний требуется определенная степень воспроизводимости, особенно для квалификационных или приемочных испытании, проводимых для испытания одного и того же типа образцов различными организациями, такими как поставщик и потребитель изделий электронной техники.

Слово «Воспроизводимость*, употребляемое в настоящем документе, не означает сходимости результатов, полученных в условиях испытаний и в реальных условиях; под ним подразумевается получение аналогичных результатов испытаний, которые проводятся в различных лабораториях различным обслуживающнм персоналом.

Большое расхождение требований к различным значениям допусков при определенном уровне жесткости, а также обеспечение достоверности результатов испытаний приводят к введению трех воспроизводимостей (см. разд. 5). Для каждой воспроизводимости можно сделать выбор метода подтверждения, принимая во внимание как динамические характеристики испытуемого образца, так и наличие испытательного оборудования.

В соответствующей НТД следует указывать воспроизводимость, соответствующую определенному случаю. причем право выбор;! метода подтверждения предоставляется испытательной лаборатории. Допуски должны быть выбраны таким образом, чтобы для определенной воспроизводимости каждый метод подтверждения давал приблизительно эквивалентные результаты.

Требования обеспечения воспроизводимости включают в себя контроль за уровнем вибрации в пределах узкой полосы частот. Несмотря на то. что выравнивание частот в узкой полосе обеспечивает лучшую воспроизводимость, чем в широкой полосе, выравнивание в узкой полосе частот в меньшей мере учитывает атияние окружающей среды на испытуемый образец. Однако выравнивание в широкой полосе частот приводит к тому, что резонанс внутри образца изменяет испытательный уровень настолько, что могут возникнуть пики и провалы. При эксплуатации реальные условия окружающей среды обычно способствуют возникновению инков и провалов вследствие влияния окружающей среды на образец. Кроме того, маловероятно, чтобы эти пики и провалы совпали с пиками и провалами, возникающими при испытаниях в лаборатории.

В информационных целях в соответствующей НТД может быть приведен анализ уровня вибрации в узкой полосе частот для того, чтобы обеспечить испытание с низкой воспроизводимостью, в остальном соответствующее этой методике.

Только большой практический опыт при проведении испытаний на воздействие случайной вибрации может дать возможность инжснсру-испытателю наилучшим образом использовать имеющееся оборудование, поэтому не следует особо подчеркивать тот факт, что только максимальное воспроизведение реальных условий определяет введение испытания на случайную вибрацию; при проведении этих испытаний необходимо принимать во внимание технические возможности испытательного оборудования. Это относится к выбору метода подтверждения и к конструкции крепления, а также к общему анализу результатов испытания.

Цель испытания - определение способности изделий, элементов н аппаратуры выдерживать воздействие случайной вибрации заданной степени жесткости.

Испытания на воздействие случайной вибрации применимы к элементам и аппаратуре, которые в условиях эксплуатации могут подвергаться воздействиям вибраций, имеющих случайный характер. Целью испытания яатястся также выявление возможных механических повреждений и (или) ухудшения заданных характеристик изделий, а также использование этих сведений наряду с требованиями соответствующей НТД для решения вопроса о пригодности образца.

Во время проведения испытания образец подвергают воздействию случайной вибрации с заданным уровнем в пределах широкой полосы частот. Вследствие сложной механической реакции образца и его крепления это испытание требует особой тщательности при его подготовке и проведении и в установлении соответствия параметров образца заданным требованиям.

3. КРЕПЛЕНИЕ И КОНТРОЛЬ

3.1. Крепление образна

Образец крепят на испытательной установке в соответствии с требованиями МЭК 68-2-47 (ГОСТ 28231).

3.2. Контрольные и мерительные точки

Требования к испытаниям подтверждают измерениями в контрольной точке и. в некоторых случаях, в измерительных точках в зависимости отточек крепления образца. Измерения в измерительных точках необходимы для высокой воспроизводимости и когда определена воображаемая точка для средней и низкой воспроизводимостей.

В случае большого количества малогабаритных образцов, установленных на одном крепежном приспособлении, если самая низкая резонансная частота крепежного приспособления под нагрузкой выше верхнего предела частоты испытания/ 2 . контрольные и (или) измерительные точки могут быть связаны с крепежным приспособлением, а не с образцами.

3.2.1. Точка крепления

Точкой крепления называют часть образца, которая находится в контакте с крепежным приспособлением или вибрационным столом и является обычно местом крепления при эксплуатации. Если образец крепят к вибрационному столу с помощью крепежного приспособления, то точками крепления считают точки крепления крепежного приспособления, а не образца.

3.2.2. Измерительная точка

Измерительной точкой яаляется обычно точка крепления. Она должна быть как можно ближе к точке крепления изделия и в любом случае должна быть жестко связана с ней.

Если имеется четыре или меньше точек крепления, то каждая такая точка рассматривается как измерительная. Если имеется более четырех точек крепления, то в соответствующей ИТД должны быть указаны четыре характерные точки, которые могут рассматриваться как измерительные.

Примечания:

1. Для больших и (или) сложных образцов важно, чтобы измерительные точки были указаны в соответствующей НТД.

2. Допуски в измерительных точках устанавливают только для высокой воспроизводимости.

3.2.3. Контрольная точка

Контрольная точка является единственной точкой, из которой получают контрольный сигнал, соответствующий требованиям испытания, и которая используется для получения информации о движении образца. Ею может быть измерительная точка или воображаемая точка, полученная при ручной или автоматической обработке сигналов из измерительных точек.

Если используется воображаемая точка, то спектр контрольного сигнала определяют как среднеарифметическое значений СПУ всех измерительных точек на каждой частоте. В этом случае кумулятивное (суммарное) среднее квадратическое значение контрольного сигнала эквивалентно среднему квадратическому значению всех средних квадратических значений сигналов, полученных из измерительных точек.

В соответствующей НТД следует указывать точку, которую следует использовать как контрольную. шли способ, с помощью которого она может быть выбрана. Рекомендуется применять воображаемую точку для больших и (или) сложных образцов.

Примечание. Для подтверждения кумулятивного среднего квадратического значения ускорения сигнала воображаемой контрольной точки допускается автоматическая обработка сигналов измерительных точек с помощью анализаторов. Однако нс допускается подтверждение уровня СПУ без коррекции таких источников погрешностей, как ширина полосы анализатора, время выборки и т. д.

4. СТЕПЕНИ ЖЕСТКОСТИ

Для этого испытания степень жесткости вибрации определяют сочетанием следующих параметров:

диапазон частот (/j - / 2);

уровень СПУ;

длительность выдержки.

Для каждого параметра в соответствующей НТД выбирают соответствующее требование из тех. которые даны ниже. Сочетание диапазона частот и уровня СПУ определяют требуемое для испытания кумулятивное среднее квадратическое значение ускорения (см. табл. 4а и 46).

Для простоты в этом испытании используют равномерный спектр. При особых обстоятельствах может оказаться возможной иная форма спектра. В этом случае в соответствующей НТД следует указать форму номинального спектра как функцию частоты. Пояснения, относящиеся к этому случаю, приводятся в качестве примечаний к пп. 4.1. 4.2 и 5.1.

4.1. Диапазон частот

Должен быть установлен один из следующих диапазонов частот по табл. I.

Характер спектра СГ1У в диапазоне частот/, и f 2 показан на рисунке.

Примечание. Если в особых случаях необходимо установить какую-либо иную спектральную плотность ускорения, то диапазон частот следует выбирать по возможности из значений, приведенных выше.

4.2. Уровни спектра СНУ

Номинальным уровень спектра СПУ (0 дБ, см. рисунок) между частотами/, и/ 2 следует выбирать из следующих значений: 0.0005:0.001; 0.002:0.005; 0.01; 0.02:0.05:0.1; 0.2; 0.5; I; 2:5; lOgtyru.

Примечание. Если в особых случаях должен быть установлен спектр СПУ с двумя или более уровнями, то их. по возможности, следует выбирать из табл. I.

Спектр плотности ускорения (СПУ) и границы допусков


Частота, f


М| - верхняя граница допуска, средняя воспроизводимость; ЛЛ - верхняя граница допуска, средняя воспроизводимость; //| - верхняя граница допуска, высокая воспроизводимость; //> - нижняя граница допуска, высокая воспроизводимость; N - установленная СПУ (номинальный спектр)

4.3. Длительность выдержки

Длительность выдержки следует выбирать из значений, приведенных ниже. Если требуемая длительность равна или больше 10 ч в каждом направлении, то это время может быть разделено на периоды по 5 ч каждый, при условии, что напряжения, возникающие в изделии (вследствие нагрев;» и т. д.). не уменьшаются.

Любая заданная длительность является суммарным временем выдержки, которое должно быть поровну разделено между каждыми заданными направлениями: 30 с; 90 с; 3 мин; 9 мин; 30 мин; 90 мин; 3 ч; 9 ч; 30 ч.

5. СТЕПЕНИ ВОСПРОИЗВОДИМОСТИ

5.1. Допуски, характеризующие степени воспроизводимости

В пределах заданного диапазона частот /, -/ 2 воспроизводимость с учетом направления воздействия вибрации определяют допусками, указанными в табл. 2. Допуски указаны в децибелах относительно установленного уровня СИУ и соответствующего кумулятивного среднего квадратического значения ускорения.

Таблица 2

Воспроизво

Границы допусков, дБ

Истинное значение СПУ

Истинное кумулятивное среднее квадратическое значение ускорения (от/, до/,) в основном иапрамении

Основное направление

Поперечное

иапраменне

Контрольные

И «мерительные точки

И смертельные

Контрольные точки

* При низкой воспроизводимости допуск на действительное значение СПУ нс устанавливается. Значение допуска на величину, полученную с помощью анализирующей аппаратуры, должно быть нс более ± 3 дБ.

Измерения в поперечном направлении при высокой воспроизводимости должны быть проделаны в двух перпендикулярных поперечных направлениях в измерительной точке, наиболее удаленной от центра плоскости крепления. Для больших образцов рекомендуется измерять ускорение в поперечном направлении в нескольких измерительных точках.

СПУ за пределами заданного частотного диапазона от/, до/ 2 должна быть по возможности ниже.

При высокой воспроизводимости выше верхнего значения диапазона частот от/ 2 до 2/ 2 требуется, чтобы наклон СПУ. указанной на рисунке, был ниже 6 дБ/октаву. Кроме того, среднее квадратическое значение ускорения в полосе частот от/ 2 до 10/ 2 или 10 кГц в зависимости от того, какое из значений меньше, не должно превышать 25 % (-12 дБ) кумулятивного среднего квадратического значения ускорения, требуемого в пределах заданного диапазона частот.

При средней воспроизводимости на частотах вышс/^ значение СПУ нс ограничивается; в диапазоне частот от f 2 до 10/ 2 или 10 кГц (берется меньшее из указанных двух значений частоты) среднее квадратическое значение ускорения не должно превышать 70 % (-3 дБ) кумулятивного значения ускорения в заданном частотном диапазоне.

При низкой воспроизводимости как СПУ. так и среднее квадратическое значение ускорения не контролируются за пределами / 2 .

На частотах ниже/, как СГ1У. так и среднее квадратическое значение ускорения не контролируются ни для одной степени воспроизводимости.

Примечание. Если в особых случаях нельзя применять равномерный спектр СГ1У. а форма номинального спектра установлена в соответствующей НТД, то границы допусков, указанные на рисунке, должны по мерс возможности применяться к этому спектру. Когда установлен спектр СПУ с двумя или более уровнями. в соответствующей Н ГД следует оговорить наклон допусков в области перепада уровней. Вследствие трудностей в получении и контроле спектров с крутыми фронтами наклоны допусков не должны превышать 25 дБ/октаву.

5.2. Выбор воспроизводимости

В соответствующей НТД должна быть указана воспроизводимость, соответствующая данному виду испытания. Классификация степеней воспроизводимости предназначена только для указания меры воспроизводимости, которую могут обеспечить различные испытательные лаборатории.

Когда требуется испытание с низкой воспроизводимостью, разработчик соответствующей Н ГД должен использовать максимально допустимую ширину полосы частот выравнивателя и (или)

ГОСТ 28220-89 С. 6

применяемого анализатора. В любом случае ширина полосы частот анализатора нс должна быть больше 100 Гц или "/з октавы, в зависимости от того, какое из этих значений больше, ^то испытание дает плохую воспроизводимость для широкополосных систем, но его будет проще и дешевле осуществить по сравнению с методом испытания с высокой воспроизводимостью. Испытание с низкой воспроизводимостью является единственным испытанием, ал я которого не требуется снятия частотной характеристики с помощью синусоидального сигнала.

Испытание с высокой степенью воспроизводимости дает относительно высокую воспроизводимость. но обычно является более сложным, для него может потребоваться более дорогое и сложное оборудование и оно занимает больше времени, вследствие требуемых дополнительных измерений. Высокая воспроизводимость должна предусматриваться только в тех случаях, когда это абсолютно необходимо.

Учитывая вышеихтоженнос. необходимо, чтобы разработчик соответствующей НТД рассмотрел эти факторы и не выбирал воспроизводимость более высокую, чем это требуется для предлагаемого применения испытываемого изделия.

6. СИНУСОИДАЛЬНАЯ ВИБРАЦИЯ

6.1. Снятие частотной характеристики

При высокой и средней воспроизводимости образец следует подвергать воздействию синусоидальной вибрации для снятия частотной характеристики. В этом случае испытание на синусоидальную вибрацию проводят по всему частотному диапазону в обоих направлениях, причем амплитуда синусоидального возбуждения находится в зависимости от заданной степени жесткости испытания на случайную вибрацию (табл. 3). В исключительных случаях, например, когда образец очень чувствителен к синусоидальной вибрации, в соответствующей НТД должно быть указано более низкое значение синусоидального сигнала.

6.2. Испытания на обнаружение резонансных частот"

В соответствующей НТД могут предусматриваться предварительное и заключительное испытания на обнаружение резонанса. В процессе этих испытаний сравнивают частоты, на которых возникают механические резонансы и другие зависящие от частоты явления (например, нарушение нормального режима работы) для того, чтобы получить дополнительную информацию относительно остаточных яалений, вызванных испытанием на воздействие случайной вибрации. В соответствующей НТД должно быть указано, что следует предпринять, если возникают какие-либо изменения резонансной частоты.

Если иное не оговорено в соответствующей НТД. дли обнаружения резонанса следует применять сигнал с амплитудой, указанной в п. 6.1.

7. ПЕРВОНАЧАЛЬНЫ К ИЗМЕРЕНИЯ

В соответствующей НТД должна быть указана необходимость измерения электрических параметров и проверки механических характеристик перед выдержкой.

8. ВЫДЕРЖКА

Во время выдержки образец подвергают воздействию случайной вибрации при заданном уровне. Образцы подвергают воздействию вибрации в трех вхаимно перпендикулярных осях поочередно. если иное не оговорено в соответствующей НТД. Напрааления воздействия вибрации выбира-

ются таким образом, чтобы вес дефекты образца можно было легко выявить. Если иное не установлено в соответствующей НТД, то аппаратура должна находиться в рабочем состоянии, если это возможно, для того, чтобы можно было определить как нарушения работоспособности образна, так и его механические дефекты.

В соответствующей НТД следует установить, требуются ли измерения электрических параметров и проверка механических характеристик во время выдержки и на какой стадии они должны быть проведены.

9. ЗАКЛЮЧИТЕЛЬНЫЕ ИЗМЕРЕНИЯ

В соответствующей Н"ГД должно быть указано, что после выдержки следует проводить измерения электрических параметров и проверку механических характеристик.

10. СВЕДЕНИЯ, КОТОРЫЕ СЛЕДУЕТ УКАЗЫВАТЬ В СООТВЕТСТВУЮЩЕЙ НТД

Если это испытание включено в соответствующую НТД, то по мере необходимости должны быть указаны следующие сведения:

Номер раздела, пункта

тизаторов и дополнительные испытания) 3.1

е) контрольные и измерительные точки 3.2

ж) частотный диапазон* 4.1

з) уровни СПУ* 4.2

и) длительность выдержки* 4.3

к) воспроизводимость* 5.2

л) испытания на обнаружение резонанса 6.2

м) значения ускорения при снятии частотной характеристики 6.1

и) первоначальные измерения* 7

о) рабочее состояние испытываемого изделия во время выдержки* 8

п) заключительные измерения* 9


а), б), в), г), д): способы крепления образца (включая магнитные помехи, воздействие температуры и гравитационные эффекты; характеристики амор

Сведения, которые следует указывать в обязательном порядке.

Исследования реальных вибраций различных ЛЛ показали, что вибраций являются случайными функциями времени. Их статистические характеристики определяются в результате обработки записей реальной вибрации. Целью испытаний является воспроизведение на вибростенде вибрации с заданными статистическими характеристиками в контрольных точках испытуемого объекта. Поскольку в качестве заданных статистических характеристик используются результаты обработки натурной вибрации, испытания случайной вибрацией наиболее точно воспроизводят реальное вибрационное состояние испытуемого изделия.

При организации испытания случайной вибрацией принимают две гипотезы:

1) о нормальности закона распределения случайных вибраций;

2) о локальной стационарности случайных вибраций.

Обоснование первой гипотезы заключается в том, что вибрационное состояние изделия можно рассматривать как суперпозицию различных случайных процессов, порождаемых статистически независимыми источниками. Следует учесть также, что если вибродатчик расположен в таком месте конструкции, где проявляются ее фильтруй щие свойства, то закон распределения выходного сигнала этого датчика приближается к нормальному.

Вторая гипотеза предполагает, что статистические характеристику вибрации изменяются достаточно медленно во времени. Это позволяет считать, что некоторые усредненные характеристики, вычисленные в определенном временном интервале, дают адекватное описание вибрационного состояния на этом отрезке времени.

Свойства вибрации как стационарного централизованного нормального процесса полностью определяются в общем случае ковариационной матрицей или ее преобразованием Фурье - матрицей спектральных плотностей. В частотном (скалярном) случае процесс характеризуется корреляционной функцией или спектральной плотностью. Поскольку испытуемые конструкции являются многорезонансными динамическими системами с ярко выраженными частотно-избирательными свойствами, спектральные характеристики (собственные и взаимные спектры) наиболее наглядны и имеют определяющее значение для инженера-испытателя. Режим испытаний случайной вибрацией определяется спектральной плотностью виброускорения, контролируемого в одной точке и в одном направлении, или матрицей спектральных плотностей при анализе векторной вибрации.

Вибрационные испытания в широкой полосе охватывают обычно частотный диапазон в одну-две декады. Случайная узкополосная вибрация возбуждается и исследуется в полосе единиц или десятков герц.

Испытание широкополосной случайной вибрацией. Широкополосные случайные процессы с заданным энергетическим спектром получили широкое распространение в качестве физических моделей реальных вибропроцессов. Описание моделей реальных вибропроцессов в рамках корреляционной теории позволяет характеризовать эквивалентность воспроизводимых и реальных вибраций степенью близости их энергетических спектров. При этом тракт воспроизведения вибрации вибро испытательно го комплекса должен обеспечивать воспроизведение в контролируемой точке или в совокупности контролируемых точек исследуемого объекта механических колебаний с требуемым энергетическим спектром.


Этот метод испытаний предусматривает одновременное возбуждение всех резонансных частот объекта. Схема установки для испытания широкополосной случайной вибрацией приведена на рис. 2.24.

Правильному воспроизведению вибрации препятствует искажающее влияние средства возбуждения вибрации. Поэтому перед испытаниями необходимо скорректировать или выровнять амплитудно-; частотную характеристику вибростенда. При испытаниях в контрольных точках изделия возбуждаются стационарные случайные вибрации. Их числовые характеристики должны быть близки к заданным, которые определяют по результатам натурных испытаний.

Метод испытания широкополосной случайной вибрацией позволяет воспроизвести те числовые вибрационные характеристики условий эксплуатации, которые влияют на надежность испытуемого изделия. За критерий подобия принята спектральная плотность вибрационных ускорений, так как вероятность выхода изделия из строя или нарушения режима его работы возрастает с повышением уровня спектральной плотности вибрации.

Программу испытаний задают в виде графика зависимости спектральной плотности от полос частоты, в которых проводили эти измерения. Эта программа воспроизводится вибростендом в контрольной точке изделия с помощью формирователей энергетического спектра, которые в общем случае представляют собой источник широкополосного случайного сигнала или белого шума и набор регулируемых полосовых фильтров.

Испытание узкополосной случайной вибрацией. Режим меняющейся узкополосной случайной вибрации является промежуточным между режимом широкополосной случайной вибрации и режимом с изменяющимся синусоидальным сигналом. Метод основан на замене возбуждения широкополосной плотности малого ускорения возбуждением узкополосной плотности большого ускорения, медленно изменяющейся на некотором участке частотного диапазона.

При правильной регулировке метод обеспечивает то же число наиболее важных ускорений на заданном уровне, что и метод широкополосной вибрации. Для воспроизведения условий резонанса и нагружения испытуемого образца узкополосная вибрация должна обладать теми же характеристиками, что и широкополосная. Необходимо также, чтобы число изменений знака ускорения для любого увеличения уровня напряжения было тем же.

Этот метод имеет следующие преимущества:

1) возможность получения значительных уровней нагрузки с помощью менее мощного оборудования;

2) возможность применения более простой аппаратуры управления а, следовательно, использования менее квалифицированного персонала.

Основными задачами являются определение закона изменения средней частоты во времени и закона изменения вибрации в зависимости от частоты. При определении этих законов основываются на эквивалентности испытаний узко- и широкополосной случайной вибрацией. Такая эквивалентность, например, установлена при испытаниях на усталостную прочность, при которых требуется идентичность распределения максимумов и минимумов нагрузки при узко- и широкополосной вибрации. Идентичность имеет место в том случае, когда средняя частота f изменяется по логарифмическому закону, а среднеквадратичное значение виброускорения пропорционально квадратному корню частоты . Для удобства назначения режима испытаний вводят параметр γ, который называется градиентом ускорения:

где σ y - среднеквадратичное значение виброперегрузки (по ускорению в единицах g = 9,81 м×с 2) при узкополосном возбуждении. Если σ y должно быть пропорционально , то градиент ускорения при испытаниях на узкополосную вибрацию - постоянная величина.

Время испытаний при логарифмическом изменении частоты определяется как

где f y и f m - время проведения испытаний при узко- и широполос-ной вибрации; р - масштабный коэффициент; f в и f и - соответственно высшая и низшая частоты диапазона, в котором производится сканирование. Для воспроизведения условий широкополосной вибрации с равномерной спектральной плотностью S 0 в полосе частот f в и F н (рис. 2.25) градиент ускорения вычисляется по формуле

где к ср - средний коэффициент передачи вибросистемы;

H 0 (p) - ee передаточная функция.

Из выражений (2.52) и (2.53) видно, что режим испытания узкополосной вибрацией определяется коэффициентами р и q. Коэффициент q может изменяться от 1.14 (при простых испытаниях) до 3,3 (при ускоренных испытаниях).

Коэффициент р изменяется соответственно в пределах 0,65 - 0,025.

На рис. 2.25,а показаны спектральные плотности узкополосных и широкополосных вибраций. Наклон штриховой линии (tgα), определяющий скорость нарастания спектральной плотности при изменении средней частоты f, равен квадрату градиента ускорения.

Важной особенностью таких испытаний является возможность автоматического регулирования уровня вибрационных нагрузок (рис. 2.25,6).

Узкополосный случайный процесс с переменной по времени центральной частотой / получается с помощью генератора белого шума и сопровождающего фильтра, центральная частота которого изменяется приводом сканирования частоты (ПСЧ). Скорость вращения ПСЧ регулируется в широких пределах. Среднеквадратичное значение узкополосных вибраций на выходе вибросистемы стабилизируется с помощь*» системы автоматической регулировки усиления (АРУ). Сигнал обратно! связи АРУ поступает с выхода виброметрической аппаратуры (ВА).

Приращению среднеквадратичного значения сигнала, пропорции нальному соответствует в логарифмическом масштабе наклон 3 дБ на октаву. Поэтому на выходе ВА (перед входом АРУ) включается фильтр, имеющий затухание 3 дБ на октаву. Это и обеспечивает постоянство градиента ускорения при сканировании средней частоты.

ЧТО ТАКОЕ СЛУЧАЙНАЯ ВИБРАЦИЯ?

Если мы возьмем конструкцию, состоящую из нескольких балок различной длины и начнем ее возбуждать скользящей синусоидой, то каждая балки будет интенсивно колебаться при возбуждении ее собственной частоты. Однако если мы возбудим эту же конструкцию широкополосным случайным сигналом, то мы увидим, что все балки начнут сильно раскачиваться, как будто в сигнале одновременно присутствуют все частоты. Это так и в то же время не так. Картина будет более реальной, если мы предположим, что в течение некоторого промежутка времени эти частотные компоненты присутствуют в сигнале возбуждения, но их уровень и фаза изменяются случайным образом. Время – вот ключевой момент в понимании случайного процесса. Теоретически мы должны учитывать бесконечный период времени, чтобы иметь истинный случайный сигнал. Если сигнал действительно случайный, то он никогда не повторяется.

Раньше для анализа случайного процесса применялась аппаратура на основе полосовых фильтров, которые выделяли и оценивали отдельные частотные составляющие. Современные анализаторы спектров используют алгоритм быстрого преобразования Фурье (БПФ). Случайный непрерывный сигнал измеряется и дискретизируется по времени. Затем для каждой временной точки сигнала вычисляется синусная и косинусная функции, которые определяют уровни частотных компонент сигнала, присутствующих в анализируемом периоде сигнала. Далее проводится измерение и анализ сигнала для следующего временного интервала и его результаты усредняются с результатами предыдущего анализа. Так повторяется до тех пор, пока не будет получено приемлемое усреднение. На практике число усреднений может колебаться от двух – трех до нескольких десятков и даже сотен.

На рисунке, представленном ниже, показано как сумма синусоид с различными частотами образуют сигнал сложной формы. Может показаться, что суммарный сигнал является случайным. Но это не так, потому что составляющие имеют постоянную амплитуду и и фазу и изменяются по синусоидальному закону. Таким образом, показанный процесс периодический, повторяющийся и предсказуемый.

В действительности случайный сигнал имеет составляющие, амплитуды и фазы которых изменяются случайным образом.

На рисунке ниже показан спектр суммарного сигнала. Каждая частотная составляющая суммарного сигнала имеет постоянную величину, но для истинно случайного сигнала величина каждой составляющей будет все время изменяться и спектральный анализ покажет усредненные по времени значения.

Частота, Гц В скв 2 (g скв 2)

Алгоритм БПФ обрабатывает случайный сигнал в течение времени проведения анализа и определяет величину каждой частотной составляющей. Эти величины представляются среднеквадратическими значениями, которые затем возводятся в квадрат. Так как мы измеряем ускорение, то единицей измерения будет перегрузка gn скв, а после возведения в квадрат - gn 2 скв. Если частотное разрешение при анализе равно 1 Гц, то измеряемая величина будет выражаться как количество ускорения возведенного в квадрат в частотном диапазоне шириной 1Гц и единицей измерения будет gn 2 /Гц. При этом нужно помнить, что gn – это gn скв.

Единица gn 2 /Гц используется при вычислении спектральной плотности и по существу выражает среднюю мощность, заключенную в частотном диапазоне шириной 1 Гц. Из профиля испытаний случайной вибрацией мы можем определить суммарную мощность, сложив мощности каждого диапазона шириной 1 Гц. Профиль, показанный ниже, имеет всего три диапазона шириной 1 Гц, но рассматриваемый метод применим к любому профилю.

Частота, Гц (4 g 2 /Гц = 4g скв 2 в каждом диапазоне шириной 1 Гц) Спектральная плотность, g скв 2 /Гц g скв g скв g скв 2 g скв 2 g скв g скв 2 g 2 /Гц

Суммарное ускорение (перегрузку) gn скв профиля можно получить сложением, но так как значения являются среднеквадратическими, то они суммируются следующим образом:

Такой же результат можно получить используя более общую формулу:

Однако профили случайной вибрации, используемые в настоящее время, редко являются плоскими и больше похожи на горный массив в разрезе.

Спектральная плотность, g скв 2 /Гц (лог. шкала) дБ/окт. дБ/окт. Частота, Гц (лог. шкала)

На первый взгляд определение суммарного ускорения gn показанного профиля задача довольно простая, и определяется как среднеквадратическая сумма значений четырех сегментов. Однако профиль показан в логарифмическом масштабе и наклонные прямые на самом деле не прямые. Эти линии являются экспоненциальными кривыми. Поэтому нам нужно вычислить площадь под кривыми, а это задача намного сложнее. Как это сделать, мы рассматривать не будем, но можно сказать, что суммарное ускорение равно 12.62 g скв.