Стабилизаторы напряжения для дома: отзывы, какой лучше и по каким критериям делать выбор. Какой стабилизатор напряжения выбрать: виды Обзор тиристорных стабилизаторов напряжения

03.03.2024

При выборе конструкции шин следует исходить из функциональной ценности каждого зуба и функциональных соотношений зубных рядов верхней и нижней челюстей.

В основе ортопедического лечения болезней пародонта лежит использование резервных сил пародонта, выравнивание функционально-силовых взаимоотношений и их перераспределение между группами зубов и зубными рядами в целом. Для этого необходим тщательный анализ одонтопародонтограммы больного.

Ортопедическое лечение при болезнях пародонта может осуществляться при сохранении всех зубов в зубных рядах. В этих случаях говорят о шинировании, иммобилизации всех зубов несъемными или съемными лечебными аппаратами.

Если болезни пародонта сопровождаются дефектами зубных рядов, то в задачу ортопедического лечения дополнительно включается необходимость восстановления отсутствующих зубов. Для этих целей используют конструкции, которые называют шинами-протезами.

Изготовление ортопедических конструкций для постоянного шинирования требует тщательного анализа и изучения зубочелюстной системы у каждого больного пародонтитом.

При планировании конструкции шинирующего протеза необходимо:

Распределить жевательную нагрузку с учетом состояния опорного аппарата каждого зуба;

Выбрать опорные, шинирующие и фиксирующие элементы и способы их соединения (жесткое, лабильное, полулабильное);

Учесть эстетические требования пациента.

Регулировать передачу жевательного давления с промежуточной части шины-протеза можно путем увеличения числа опорных зубов, выравнивая углы наклона коронковой части опорных зубов, уменьшая площадь жевательной поверхности искусственных зубов, меняя конструктивные особенности кламмеров и увеличивая площадь базиса протеза. Нивелирование функциональных возможностей между зубными рядами верхней и нижней челюстей может быть достигнуто путем обоснованного применения съемных и несъемных шин-протезов.

Топография и величина дефекта зубных рядов наряду с состоянием паро-донта зубов, граничащих с дефектом, и всех оставшихся зубов, определяют характер стабилизации и вид шины-протеза.

В зависимости от локализации шины различают следующие виды стабилизации: фронтальную, сагиттальную, фронтосагиттальную, парасагиттальную, стабилизацию по дуге.

Вид стабилизации зубного ряда, т.е. протяженность шины, определяется на основании клинической ситуации и анализа пародонтограммы.

Протяженность и вид шины зависят от степени сохранности резервных сил зубов, пораженных пародонтитом, и функциональных соотношений ан-тагонирующих пар зубов. При этом следует руководствоваться следующими правилами: сумма коэффициентов функциональной значимости зубов (по па-родонтограмме) с неповрежденным пародонтом, включаемых в шину, должна в 1,5-2 раза превышать сумму коэффициентов зубов с пораженным пародонтом и быть равна 1/2 суммы коэффициентов зубов-антагонистов, принимающих участие в откусывании и разжевывании пищи. В качестве шины в этом случае может быть применена единая система экваторных коронок, коронок с облицовкой (металлокерамические или металлокомпозитные), клеящиеся шины, цельнолитые съемные шины и др. В случае если очаговый (локализованный) пародонтит распространяется на всю функционально ориентированную группу зубов (переднюю, боковую) и у этих зубов нет резервных сил (атрофия достигла 1/2 длины стенки лунки и более), необходимо переходить на смешанный вид стабилизации. Для группы жевательных зубов наиболее целесообразен парасагиттальный вид стабилизации, для группы передних зубов - фронтальная стабилизация или стабилизация по дуге.

На сегодняшний день производится большое множество стабилизаторов напряжения самых разных типов и видов, которые предназначены для работы в сетях с нестабильным напряжением. Каждый вид стабилизаторов обладает уникальными и свойственными ему особенностями, которые обязательно следует учесть в процессе выбора. Ниже будут рассмотрены основные типы стабилизаторов напряжения.

1. Типы стабилизаторов напряжения по принципу работы

1.1. Электронные (симисторные, тиристорные)

Электродинамические: однофазные 220/230/240В, трехфазные 380/400/415В, трехфазные (среднее второе напряжение) 6кВ, 10кВ;

Релейные: однофазные 220В;

Феррорезонансные: однофазные 110/120/220/230/240В, трехфазные 380/400/415.

3. Диапазон мощности по видам стабилизаторов напряжения

    Электронные: однофазные 2 – 30кВА, трехфазные 10 – 500 кВА;

    Электродинамические: однофазные 0,3 – 135кВА, трехфазные 5 – 6000кВА;

    Релейные: однофазные 1 – 15кВА;

    Феррорезонасные: однофазные 0,1 – 15кВА, трехфазные 5 – 100кВА.

4. Заключение

Во внимание не принимались производители китайского происхождения, которые массово поставляют в Украину электродинамические и феррорезонансные стабилизаторы низкого качества.

Для бытового применения хорошо подходят стабилизаторы электронного, электродинамического и релейного типов. Однако стоит помнить, что для электродинамических и релейных стабилизаторов лучше выделять отдельное помещение, поскольку при работе устройства излучают незначительный шум. Также обратите внимание на то, что релейные устройства лучше применять там, где нет частых и сильных просадок электрической сети, а также нагрузок больше 7 – 8 кВт.

Для промышленного применения идеально подходят стабилизаторы электродинамического типа, которые выдерживают большие пиковые нагрузки, а также имеют плавное регулирование и множество дополнительных опций, в т.ч. удаленный мониторинг и управление. Электронные стабилизаторы также хорошо подходят для промышленных установок , где допускается незначительная погрешность напряжения и отсутствуют значительные пусковые токи.

По вопросам консультирования и подбора оборудования обращайтесь к менеджерам по продукции, а также рекомендуем воспользоваться удобным инструментов по выбору стабилизаторов напряжения из нашего каталога.

Активное использование электроприборов во всех сферах деятельности делает актуальной проблему обеспечения качества потребляемой электроэнергии.

Существующие особо ответственные потребители, сети с пониженным напряжением требуют автоматического поддержания уровня питающего напряжения в строго определенных границах.

Проблему качества поставляемой электроэнергии, соблюдение необходимых параметров выходного напряжения эффективнее всего, по сравнению с другими средствами, могут решить сетевые стабилизаторы.

Примененные технические решения позволяют классифицировать стабилизаторы по основным типам:

  • - релейные;
  • - симисторные;
  • - сервоприводные (электромеханические);
  • - феррорезонансные.

Каждый из них имеет свои достоинства и недостатки. При подборе стабилизатора надо учитывать их основные характеристики – важны скорость реакции на колебания напряжения на входе, возможность плавного изменения или ступенчатая регулировка напряжения на входе, расчетный срок эксплуатации до возможного отказа, и естественно, стоимость оборудования.

Релейные стабилизаторы

Включают в себя автотрансформатор и силовые реле. В принцип действия заложена ступенчатая регулировка напряжения подключением определенного отвода от автотрансформатора.

Электронная схема управляет силовыми реле, которые автоматически переключают обмотки автотрансформатора.

Этот тип стабилизаторов не способен обеспечить высокой точности регулирования выходного напряжения. Повысить уровень качества стабилизации возможно только за счет усложнения конструкции автотрансформатора, но соответственно вырастет и цена оборудования.

Данный тип стабилизаторов целесообразно использовать с приборами малой мощности.

Симисторные стабилизаторы

Симисторные стабилизаторы - электронные, принцип их работы – регулировка по релейному типу. Обмотки автотрансформатора коммутируются (переключаются) электронными ключами (симисторами или тиристорами).

В результате исключения механических реле повышаются скорость переключения, надежность, аппаратура работает бесшумно. Но используемый алгоритм ступенчатой регулировки не дает высокой точности. Стоимость по сравнению с релейными аналогами выше почти в 3 раза.

Сервоприводные стабилизаторы

Обеспечивают плавную регулировку выходного напряжения по принципу работы реостата. В конструкцию включен электропривод, передвигающий подвижные контакты в виде ролика или щетки электродвигателя по обмотке автотрансформатора.

При изменении входного напряжения электродвигатель по команде управляющей электроники перемещает контакт в необходимое положение на обмотке, что позволяет изменять напряжение на выходе плавно.

Применение сервоприводных регуляторов напряжения ограничивается сетями без быстрых скачков напряжения .

Феррорезонансные стабилизаторы

Обеспечивают регулировку выходного напряжения непрерывно в определенном диапазоне нагрузок. В них используется эффект феррорезонанса в системе трансформатор-конденсатор.

Применение подобного типа стабилизаторов ограничено из-за ряда нерешенных технических проблем.

Таблица 1. Краткий обзор стабилизаторов напряжения
Типы стабилизаторов напряжения Достоинства Недостатки Цена КПД
Релейные - высокая скорость регулирования. - ступенчатое изменение напряжения;
- искажение синусоиды;
- низкая точность стабилизации;
- ограниченная выходная мощность.
$80 ÷ $450 97 - 99 %
Симисторные - низкий уровень шума при работе;
- высокая скорость коммутации;
- плавная регулировка.
- невысокая точность регулирования. $1090 ÷ $2700 96 - 98 %
Сервоприводные - плавная регулировка напряжения;
- высокая точность регулирования;
- отсутствие искажений синусоиды.
- низкая скорость регулирования;
- низкая надежность из-за механически движущихся деталей;
- низкая скорость реакции.
$60 ÷ $940 97 - 99 %
Феррорезонансные - высокое быстродействие;
- большой ресурс работы;
- высокая надежность;
- высокая точность стабилизации.
- малый диапазон регулирования;
- искажения синусоидальности;
- не допускается работа в режиме холостого хода и при перегрузках;
- большой вес.
$560 ÷ $2400 70 - 80 %

Для того чтобы справляться с помехами в сети, необходимы стабилизаторы тока. Данные устройства могут сильно отличаться по своим характеристикам, а связано это с источниками питания. Бытовые приборы в доме являются не сильно требовательными в плане стабилизации тока, однако измерительное оборудование нуждается в стабильном напряжении. Благодаря беспомеховым моделям у ученых появилась возможность получать достоверную информацию в своих исследованиях.

Как устроен стабилизатор?

Основным элемент стабилизатора принято считать трансформатор. Если рассматривать простую модель, то там имеется выпрямительный мост. Соединяется он с конденсаторами, а также с резисторами. В цепи они могут устанавливаться различных типов и предельное сопротивление они выдерживают разное. Также в стабилизаторе имеется конденсатор.

Принцип работы

Когда ток попадает на трансформатор, его предельная частота изменяется. На входе данный параметр находится в районе 50 Гц. Благодаря преобразованию тока предельная частота на выходе составляет 30 Гц. Высоковольтные выпрямители при этом оценивают полярность напряжения. Стабилизация тока в данном случае осуществляется благодаря конденсаторам. Снижение помех происходит в резисторах. На выходе напряжение вновь становится постоянным, и в трансформатор поступает с частотой не выше 30 Гц.

Принципиальная схема релейного устройства

Релейный стабилизатор тока (схема показана ниже) включает в себя компенсационные конденсаторы. Мостовые выпрямители в этом случае используются в начале цепи. Также следует учитывать, что транзисторов в стабилизаторе имеется две пары. Одна из них устанавливается перед конденсатором. Необходимо это для поднятия предельной частоты. В данном случае выходное напряжение постоянного тока будет находиться на уровне 5 А. Чтобы номинальное сопротивление выдерживалось, используются резисторы. Для простых моделей свойственны двухканальные элементы. Процесс преобразования в таком случае происходит долго, однако коэффициент рассеивания будет незначительным.

Устройство симисторного стабилизатора LM317

Как видно из названия, основным элементом LM317 (стабилизатор тока) является симистор. Он дает устройству колоссальную прибавку в предельном напряжении. На выходе данный показатель колеблется в районе 12 В. Внешнее сопротивление системой выдерживается в 3 Ом. Для высокого коэффициента сглаживания используются многоканальные конденсаторы. Для высоковольтных устройств применяются транзисторы только открытого типа . Смена их положения в такой ситуации контролируется за счет изменения номинального тока на выходе.

Дифференциальное сопротивление LM317 (стабилизатор тока) выдерживает 5 Ом. Для измерительных приборов этот показатель обязан составлять 6 Ом. Неразрывный режим тока дросселя обеспечивается за счет мощного трансформатора. Устанавливается он в стандартной схеме за выпрямителем. Диодные мосты для низкочастотных приборов применяются редко. Если рассматривать приемники на 12 В, то для них свойственны резисторы балластного типа. Это необходимо для того, чтобы снизить колебания в цепи.

Высокочастотные модели

Высокочастотный стабилизатор тока на транзисторе КК20 отличается быстрым процессом преобразования. Происходит это за счет смены полярности на выходе. Частотозадающие конденсаторы устанавливаются в цепи попарно. Фронт импульсов в такой ситуации не должен превышать 2 мкс. В противном случае стабилизатор тока на транзисторе КК20 ждут значительные динамические потери. Насыщение резисторов в цепи может осуществляться при помощи усилителей. В стандартной схеме их предусмотрено не менее трех единиц. Для уменьшения тепловых потерь используются емкостные конденсаторы. Скоростные характеристики ключевого транзистора зависят исключительно от величины делителя.


Широтно-импульсные стабилизаторы

Широтно-импульсный стабилизатор тока отличается большими значениями индуктивности дросселя. Происходит это за счет быстрой смены делителя. Также следует учитывать, что резисторы в данной схеме применяются двухканальные. Ток они способны пропускать в различных направлениях. Конденсаторы в системе используются емкостные. За счет этого предельное сопротивление на выходе выдерживается на уровне 4 Ом. В свою очередь, максимальную нагрузку стабилизаторы способны держать 3 А.

Для измерительных приборов такие модели используются довольно редко. Источники питания в данном случае предельное напряжение должны иметь не более 5 В. Таким образом, коэффициент рассеивания будет находиться в пределах нормы. Скоростные характеристики ключевого транзистора в стабилизаторах данного типа не сильно высокие. Связано это с низкой способностью резисторов блокировать ток от выпрямителя. В результате помехи с высокой амплитудой приводят к значительным тепловым потерям. Спады импульсов в данном случае происходят исключительно за счет снижения нейтрализации свойств трансформатора.

Процессом преобразования занимается только балластный резистор, который располагается за выпрямительным мостом. Полупроводниковые диоды в стабилизаторах используется редко. Необходимость в них отпадает из-за того, что фронт импульсов в цепи, как правило, не превышает 1 мкс. В результате динамические потери в транзисторах не являются фатальными.

Схема резонансных устройств

Резонансный стабилизатор тока (схема показана ниже) включают в себя малоемкостные конденсаторы и резисторы с различным сопротивлением. Трансформаторы в данном случае являются неотъемлемой частью усилителей. Для увеличения коэффициента полезного действия используется множество предохранителей. Динамические характеристики резисторов от этого возрастают. Низкочастотные транзисторы монтируются сразу за выпрямителями. Для хорошей проводимости тока конденсаторы способны работать при различной частоте.


Стабилизатор переменного тока

Стабилизатор тока данного типа является неотъемлемой частью источников питания с мощностью до 15 В. Внешнее сопротивление устройствами воспринимается до 4 Ом. Напряжение переменного тока на входе в среднем составляет 13 В. В данном случае коэффициент сглаживания контролируется за счет конденсаторов открытого типа. Уровень пульсации на выходе зависит исключительно от схемы построения резисторов. Пороговое напряжение стабилизатор тока должен быть способным выдерживать 5 А.

В таком случае параметр дифференциального сопротивления обязан находиться на отметке в 5 Ом. Максимально допустимая мощность рассеивания в среднем составляет 2 Вт. Это говорит о том, что стабилизаторы переменного тока имеют существенные проблемы с фронтом импульсов. Понизить их колебания в данном случае способны только мостовые выпрямители. При этом в обязательном порядке учитывается величина делителя. Для снижения тепловых потерь в стабилизаторах применяются предохранители.


Модель для светодиодов

Для регулировки светодиодов большой мощностью стабилизатор тока не должен обладать. В данном случае задача состоит в том, чтобы максимально снизить порог рассеивания. Сделать стабилизатор тока для светодиодов это может несколькими способами. В первую очередь, в моделях применяются преобразователи. В результате предельная частота на всех этапах не превышает 4 Гц. В данном случае это дает значительную прибавку к производительности стабилизатора.

Второй способ заключается в использовании усилительных элементов. В такой ситуации все завязывается на нейтрализации переменного тока. Для уменьшения динамических потерь транзисторы в схеме используются высоковольтные. Справиться с излишним насыщением элементов способны конденсаторы открытого типа. Для наибольшего быстродействия трансформаторов применяются ключевые резисторы. В схеме они располагаются стандартно за выпрямительным мостом.


Стабилизатор с регулятором

Регулируемый стабилизатор тока является востребованным в промышленной сфере. С его помощью пользователь имеет возможность проводить настройку устройства. Дополнительно многие модели рассчитаны на дистанционное управление. С этой целью в стабилизаторах монтируются контроллеры. Предельное напряжение переменного тока такие устройства выдерживают на уровне 12 В. Параметр стабилизации в этом случае должен составлять не менее 14 Вт.

Показатель порогового напряжения зависит исключительно от частотности прибора. Для изменения коэффициента сглаживания регулируемый стабилизатор тока использует емкостные конденсаторы. Максимальный ток системой поддерживается на уровне 4 А. В свою очередь, показатель дифференциального сопротивления допускается на уровне 6 Ом. Все это говорит о хорошей производительности стабилизаторов. Однако мощность рассеивания может довольно сильно отличаться. Также следует знать, что неразрывный режим тока дросселя обеспечивается за счет трансформатора.

На первичную обмотку напряжение подается через катод. Блокировка тока на выходе зависит только от конденсаторов. Для стабилизации процесса предохранители, как правило, не используются. Быстродействие системы обеспечивается за счет спадов импульсов. Быстрый процесс преобразования тока в цепи приводит к понижению фронта. Транзисторы в схеме применяются исключительно ключевого типа.


Стабилизаторы постоянного тока

Стабилизатор постоянного тока работает по принципу двойного интегрирования. Преобразователи во всех моделях отвечают за этот процесс. Для увеличения динамических характеристик стабилизаторов используются двухканальные транзисторы. Чтобы минимизировать тепловые потери , емкость конденсаторов должна быть значительной. Точный расчет значения позволяет сделать показатель выпрямления. При выходном напряжении постоянного тока в 12 А предельное значение максимум должно составлять 5 В. В таком случае рабочая частота устройства будет поддерживаться на отметке в 30 Гц.

Пороговое напряжение зависит от блокировки сигнала от трансформатора. Фронт импульсов в данном случае не должен превышать 2 мкс. Насыщение ключевых транзисторов происходит только после преобразования тока. Диоды в данной схеме могут использоваться исключительно полупроводникового типа. Балластные резисторы приведут стабилизатор тока к значительным тепловым потерям. В результате коэффициент рассеивания очень возрастет. Как следствие - амплитуда колебаний увеличится, процесс индуктивности не произойдет.

Параметрический стабилизатор напряжения - это устройство, в котором стабилизация выходного напряжения достигается за счет сильной нелинейности вольт-амперной характеристики электронных компонентов , использованных для построения стабилизатора (т.е. за счет внутренних свойств электронных компонентов, без построения специальной системы регулирования напряжения).

Для построения параметрических стабилизаторов напряжения обычно используются стабилитроны, стабисторы и транзисторы.

Из-за низкого КПД такие стабилизаторы находят применение в основном в слаботочных схемах (с нагрузками до нескольких десятков миллиампер). Наиболее часто они используются как источники опорного напряжения (например, в схемах компенсационных стабилизаторов напряжения).

Параметрические стабилизаторы напряжения бывают однокаскадными, многокаскадными и мостовыми.

Рассмотрим простейший параметрический стабилизатор напряжения, построенный на основе стабилитрона (схема приведена ниже):

  1. Iст - ток через стабилитрон
  2. Iн - ток нагрузки
  3. Uвых=Uст - выходное стабилизированное напряжение
  4. Uвх - входное нестабилизированное напряжение
  5. R 0 - балластный (ограничительный, гасящий) резистор

Работа стабилизатора основана на том свойстве стабилитрона, что на рабочем участке вольт-амперной характеристики (от Iст min до Iст max) напряжение на стабилитроне практически не изменяется (на самом деле конечно изменяется от Uст min до Uст max, но можно считать, что Uст min = Uст max = Uст).

В приведенной схеме, при изменении входного напряжения или тока нагрузки - напряжение на нагрузке практически не меняется (оно остаётся таким же, как и на стабилитроне), вместо этого изменяется ток через стабилитрон (в случае изменения входного напряжения и ток через балластный резистор тоже). То есть, излишки входного напряжения гасятся балластным резистором, величина падения напряжения на этом резисторе зависит от тока через него, а ток через него зависит в том числе от тока через стабилитрон, и таким образом, получается, что изменение тока через стабилитрон регулирует величину падения напряжения на балластном резисторе.

Уравнения, описывающие работу данной схемы:

Uвх=Uст+IR 0 , учитывая, что I=Iст+Iн, получим

Uвх=Uст+(Iн+Iст)R 0 (1)

Для нормальной работы стабилизатора (чтобы напряжение на нагрузке всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе нагрузки. Зная это, найдём сопротивление балластного резистора :

R 0 =(Uвх min-Uст min)/(Iн max+Iст min) (2)

Максимальный ток через стабилитрон будет течь при минимальном токе нагрузки и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:

Перегруппировав это выражение, получим:

Или, по другому:

Если считать, что минимальное и максимальное напряжение стабилизации (Uст min и Uст max) отличаются незначительно, то первое слагаемое в правой части можно считать равным нулю, тогда уравнение, описывающее область нормальной работы стабилизатора , примет следующий вид:

Из этой формулы сразу виден один из недостатков такого параметрического стабилизатора - мы не можем сильно менять ток нагрузки, поскольку это сужает диапазон входного напряжения схемы, более того, можно увидеть, что диапазон изменения тока нагрузки не может быть больше, чем диапазон изменения тока стабилизации стабилитрона (поскольку в этом случае правая часть уравнения вообще становится отрицательной)

Если ток нагрузки постоянен или изменяется незначительно , тогда формула для определения области нормальной работы становится совсем элементарной:

Далее, давайте рассчитаем КПД нашего параметрического стабилизатора. Он будет определяться отношением мощности, отдаваемой в нагрузку к входной мощности: КПД=Uст*Iн/Uвх*I. Если учесть, что I=Iн+Iст, то получим:

Из последней формулы видно, что чем больше разница между входным и выходным напряжением, а также чем больше ток через стабилитрон - тем хуже КПД.

Чтобы понять, что значит «хуже» и насколько вообще плохо обстоит дело с КПД у этого стабилизатора - давайте, используя формулы выше, попробуем прикинуть, что будет, если понижать напругу скажем с 6-10 Вольт до 5-ти. Возьмём самый обычный стабилитрон, скажем КС147А. Ток стабилизации у него может меняться в пределах от 3-х до 53-х мА. Чтобы при таких параметрах стабилитрона получить область нормальной работы шириной в 4 Вольта - нам нужно взять балластный резистор на 80 Ом (воспользуемся формулой 4, как будто ток нагрузки у нас постоянный, поскольку если это не так, то всё будет ещё хуже). Теперь из формулы 2 можно посчитать на какой именно ток нагрузки мы можем в этом случае рассчитывать. Получается всего 19,5 мА, а КПД в этом случае будет, в зависимости от входного напряжения, в пределах от 14% до 61%.

Если для этого же случая посчитать на какой максимальный выходной ток мы можем рассчитывать при условии, что выходной ток не постоянный, а может меняться от нуля до Imax, то решив совместно системы уравнений (2) и (3), получим R 0 =110 Ом, Imax=13,5 мА. Как видите, максимальный выходной ток получился почти в 4 раза меньше максимального тока стабилитрона.

Более того, выходное напряжение, полученное на таком стабилизаторе, будет обладать значительной нестабильностью в зависимости от выходного тока (у КС147А на рабочем участке ВАХ напряжение меняется от 4,23 до 5,16В), что может оказаться неприемлемым. Единственный путь борьбы с нестабильностью в данном случае - взять более узкий рабочий участок ВАХ - такой, на котором напряжение меняется не от 4,23 до 5,16В, а скажем от 4,5 до 4,9В, но в этом случае и рабочий ток стабилитрона будет уже не 3..53мА, а скажем 17..40мА. Соответственно, и без того небольшая область нормальной работы стабилизатора станет ещё меньше.

Итак, единственный плюс такого стабилизатора - это его простота, тем не менее, как я уже говорил, такие стабилизаторы вполне себе существуют и даже находят активное применение в качестве источников опорного напряжения для более сложных схем.

Простейшая схема, позволяющая получить существенно больший выходной ток (или существенно более широкую область нормальной работы, или и то и другое) - .

Лекция 8

Стабилизаторы напряжения и тока.

Принцип стабилизации. Виды стабилизаторов.

Величина напряжения на выходе выпрямителей, предназначенных для питания различных РТУ, может колебаться в значительных пределах, что ухудшает работу аппаратуры. Основными причинами этих колебаний являются изменения напряжения на входе выпрямителя и изменение нагрузки. В сетях переменного тока наблюдаются изменения напряжения двух видов: медленные, происходящие в течение от нескольких минут до нескольких часов, и быстрые, длительностью доли секунды. Как те, так и другие изменения отрицательно сказываются на работе аппаратуры. Например, ЛБВ вообще не могут работать без стабилизации напряжения. Для обеспечения заданной точности измерительных приборов (электронных вольтметров, осциллографов и др.) также необходима стабилизация напряжения.
Стабилизатором напряжения называется устройство, поддерживающее напряжение на нагрузке с требуемой точностью при изменении сопротивления нагрузки и напряжения сети в известных пределах.
Стабилизатором тока называется устройство, поддерживающее ток в нагрузке с требуемой точностью при изменении сопротивления нагрузки и напряжения сети в известных пределах.
Стабилизатор одновременно со своими основными функциями осуществляет и подавление пульсаций.
Качество работы стабилизатора оценивается коэффициентом стабилизации, равным отношению относительного изменения напряжения на входе к относительному изменению напряжения на выходе стабилизатора:

Качество стабилизации оценивается также относительной нестабильностью выходного напряжения

Внутреннее сопротивление

(3)

Коэффициент сглаживания пульсаций

(4)

где Uвх~, Uвых~ - амплитуды пульсации входного и выходного напряжений соответственно. Для стабилизаторов тока важны следующие параметры:

Коэффициент стабилизации тока по входному напряжению

(5)

Коэффициент стабилизации при изменении сопротивления нагрузки

(6)

Коэффициент полезного действия определяется для всех типов стабилизаторов по отношению входной и выходной активных мощностей

Существуют два основных метода стабилизации: параметрический икомпенсационный .
Параметрический метод основан на использовании нелинейных элементов, за счёт которых происходит перераспределение токов и напряжений между отдельными элементами схемы, что ведёт к стабилизации.
Структурная схема параметрического стабилизатора состоит из двух элементов - линейного и нелинейного.

При изменении напряжения на входе стабилизатора в широких пределах () напряжение на выходе изменяется в значительно меньших пределах ()

Параметрические стабилизаторы напряжения строятся на основе кремниевых стабилитронов. В кремниевом стабилитроне при определённом Uст развивается лавинный пробой p-n перехода (см. рисунок (а)). Обычно рабочую ветвь изображают при ином расположении осей (см. рисунок (б)). Рабочий участок ограничен предельно допустимым по тепловому режиму Imax.

В параметрическом стабилизаторе переменного напряжения линейным элементом служит конденсатор, а нелинейным - дроссель насыщения.
Компенсационный стабилизатор отличается наличием отрицательной обратной связи , посредством которой сигнал рассогласования усиливается и воздействует на регулируемый элемент, изменяя его сопротивление, что ведёт к стабилизации. Компенсационные стабилизаторы, в которых регулируемый транзистор постоянно (непрерывно) находится в открытом состоянии, называются линейными или с непрерывным регулированием. В импульсном стабилизаторе регулируемый транзистор работает в ключевом режиме.

Нормальная работа электронной аппаратуры возможна при поддержании напряжения питания в заданных допустимых пределах . Например, для питания измерительных устройств, работающих с точностью 0,1%, требуется стабильность напряжения питания 0,01%. Большинство выпрямителей не обеспечивают заданной стабильности напряжения. Изменение питающего напряжения может произойти из-за изменения напряжения в сети переменного тока или из-за изменения постоянного тока в аппаратуре. С изменением сопротивления нагрузки изменяется ток и падение напряжения на внутреннем сопротивлении выпрямительных устройств, что приводит к изменению питающего напряжения.

Для поддержания напряжения питания в допустимых пределах между фильтром и нагрузкой включается устройство, называемое стабилизатором напряжения. Стабилизатор напряжения поддерживает напряжение питания аппаратуры с заданной точностью при изменении сопротивления нагрузки и напряжения сети в заданных пределах. После стабилизатора включается устройство защиты стабилизатора от перегрузок.

Параметрические стабилизаторы постоянного напряжения

В качестве нелинейных элементов в них применяются кремневые или газоразрядные стабилитроны (рисунок 5).

Рисунок 5 – Принципиальная схема параметрического стабилизатора напряжения

Так как при использовании кремневых стабилитронов используется участок обратной ветви вольтамперной характеристики, то стабилитрон включается анодом к минусу, а катодом к плюсу входного напряжения. Сопротивление гасящего резистора R Г и нагрузки R Н выбираются таким образом, чтобы ток в цепи I вх = I ст.ср.

При увеличении (уменьшении) входного напряжения U вх ток стабилитрона I ст увеличивается (уменьшается) в пределах от I ст минимум до I ст максимум, а ток I н остается постоянным. Этим обеспечивается стабильность напряжения на нагрузке.

Параметрические стабилитроны напряжения просты и надежны, однако имеют существенные недостатки:

Малый коэффициент стабилизации, малый коэффициент полезного действия, малая мощность, невозможность регулирования выходного напряжения, хорошо работают на постоянную нагрузку.

Компенсационные стабилизаторы напряжения

Принцип стабилизации напряжения сети можно рассмотреть на примере схемы (рисунок 6). Схема состоит из регулирующего элемента Р, измерительного элемента U(PV) и оператора (У). При изменении напряжения сети U вх или тока нагрузки I н в заданных пределах выходного напряжения U вых должно оставаться постоянным. Согласно второго закона Кирхгофа U вых = U вх -U р =const. Для поддержания постоянства выходного напряжения оператор должен изменять положение движка переменного резистора с учетом показаний вольтметра.


Рисунок 6 – Прнцип работы стабилизатора напряжения

Рассмотренная схема (рисунок 6) приемлема при медленных изменениях U вх и I н. В реальных устройствах U вх и I н могут изменяться в импульсном режиме или с большой скоростью. Поэтому стабилизаторы должны изготовляться на элементах с большим быстродействием, т.е. с использованием транзисторов и микросхем.

Стабилизаторы могут быть выполнены с последовательным (рисунок 7 а) и параллельным (рисунок 7 б) включением регулирующего элемента относительно нагрузки.

В последовательной схеме регулирующий элемент включен последовательно с нагрузкой и постоянство выходного напряжения достигается за счет изменения падения напряжения на самом регулирующем элементе. В параллельной схеме регулирующий элемент включен параллельно с нагрузкой, а постоянство выходного напряжения поддерживается за счет изменения тока через регулирующий элемент, в результате изменяется падение напряжения на гасящем (балластном) сопротивлении R r , включенном последовательно с нагрузкой.

Схема с параллельным включением регулирующего элемента применяется лишь в маломощных стабилизаторах из-за низкого КПД, так как мощность расходуется на гасящем резисторе R r и включенном параллельно нагрузке регулирующем элементе Р. Достоинством этой схемы является то, что такой стабилизатор не боится перегрузок и коротких замыканий.

Стабилизаторы с последовательным включением регулирующего элемента обладает более высоким КПД и находит более широкое применение. Принцип работы такого стабилизатора следующий. Пусть напряжение U вх возросло, что в первый момент приведет к некоторому увеличению напряжения U вых.

На измерительный элемент И поступит повышенное напряжение (или часть его). Измерительный элемент автоматически сравнивает напряжение U вых с эталонным напряжением (источник эталонного напряжения находится в самом измерительном элементе) и вырабатывает сигнал рассогласования U v . Этот сигнал усиливается усилителем У и поступает на регулирующий элемент Р. Под воздействием напряжения U у регулирующий элемент увеличивает сопротивление. На возросшем сопротивлении регулирующего элемента увеличивается падение напряжения U р настолько, насколько произошло увеличение входного напряжения, и выходное напряжение будет почти неизменным. Таким образом, насколько увеличится (уменьшится) выходное напряжение, настолько увеличится (уменьшится) падение напряжения на регулирующем элементе (т.е. произойдет компенсация входного напряжения), и выходное напряжение U вых = U вх -U р останется постоянным. Поэтому такие стабилизаторы получили название компенсационных.

Принцип работы стабилизатора с параллельным включением регулирующего элемента описывается уравнением U вых =U вх -U R г =const. При изменении входного напряжения или тока нагрузки в заданных пределах ток регулирующего элемента I р (т.е. падение напряжения U R г) изменяется таким образом, что выходное напряжение U вых остается постоянным.

При напряжениях до 150 В применяются полупроводниковые стабилизаторы, так как они имеют малые габариты и массу, высокую надежность и большую долговечность. В последовательном полупроводниковом компенсационном стабилизаторе (рисунок 8) в качестве регулирующего элемента используется транзистор VT1, усилителя постоянного тока ─ транзистор VT2 и резистор R2. В качестве измерительного элемента применен мост, состящий из резисторов R4… R6 и параметрического стабилизатора, состоящего из стабилитрона VD5 и ограничительного резистора R3. К диагонали моста вг приложено выходное напряжение стабилизатора, а к диагонали аб присоединен участок эмиттер ─ база транзистора VT2.

При подключении к стабилизатору входного напряжения в нем протекают токи: ток делителя (плюс ─R6─ R5─ R4─ эмиттер VT1 ─ коллектор VT1 ─ минус); ток параметрического стабилизатора (плюс VD5─ R3─эмиттер VT1─ коллектор VT1 ─минус); ток коллектора VT2 (плюс ─ VD5 ─ VT2─коллектор VT2─ R2─минус); ток нагрузки (плюс ─ R н (R8, R7) ─ эмиттер VT1─ коллектор VT1─ минус).

При уменьшении выходного напряжения, вызванного возрастанием тока нагрузки или уменьшением входного напряжения, уменьшается ток делителя. Падение напряжения на резисторе R6 и части резистора R5 уменьшится, что приведет к уменьшению напряжения на эмиттерном переходе транзистора VT2. Так как к эмиттеру транзистора VT2 приложено эталонное напряжение U оп, то ток коллектора транзистора R6уменьшится пропорционально уменьшению входного напряжения. Падение напряжения на резисторе R2, приложенное плюсом к базе транзистора VT1, уменьшится, а следовательно, потенциал базы станет более отрицательным по отношению к эмиттеру. Напряжение U ЭБ1 возрастает, и сопротивление транзистора уменьшится. При правильно выбранных параметрах схемы падение напряжения на транзисторе уменьшится настолько, насколько увеличится входное напряжение. Выходное напряжение при этом стремится к прежнему значению.

При увеличении входного напряжения или уменьшении тока нагрузки процесс регулирования происходит таким образом, что напряжения U ЭБ1 регулирующего транзистора понижается, сопротивление регулирующего элемента увели­чится и выходное напряжение стремится к прежнему значению.

Процесс регулирования происходит практически мгновенно.

При повороте оси переменного резистора R5 изменяется напряжение U ЭБ1 , что обеспечивает плавную регулировки выходного напряжения в заданных пределах от номинального значения . Для улучшения сглаживания пульсаций выпрямленного напряжения и подавления импульсных помех сопротивление верхнего плеча делителя шунтируется конденсатором С2.

При коротком замыкании нагрузки резко увеличивается ток в регулирующем транзисторе и возрастает падение напряжения на нем. Это может привести к выходу из строя транзистора VT1 как из-за увеличения мощности потерь, так и из-за возможного пробоя переходов.

Для защиты стабилизатора от перегрузок и коротких замыканий в его схему вводятся дополнительные элементы, которые в режиме перегрузки и короткого замыкания вырабатывают напряжение, запирающие транзистор VT1. В простейшем случае защита от коротких замыканий в стабилизаторах малой мощности может быть выполнена подбором сопротивления резистора R1 таким, чтобы выходной ток в режиме короткого замыкания не превышал максимально допустимого тока коллектора транзистора VT1 и выпрямительного моста.

В этой статье пойдёт речь о стабилизаторах постоянного напряжения на полупроводниковых приборах. Рассмотрены наиболее простые схемы стабилизаторов напряжения, принципы их работы и правила расчёта. Изложенный в статье материал полезен для конструирования источников вторичного стабилизированного питания.

Начнём с того, что для стабилизации любого электрического параметра должна быть схема слежения за этим параметром и схема управления этим параметром. Для точности стабилизации необходимо наличие "эталона", с которым стабилизируемый параметр сравнивается. Если в ходе сравнения оказывается, что параметр больше эталонного значения, то схема слежения (назовём её схемой сравнения) даёт команду на схему управления "уменьшить" значение параметра. И наоборот, если параметр оказывается меньше эталонного значения, то схема сравнения даёт команду на схему управления "увеличить" значение параметра. На этом принципе работают все схемы автоматического управления всех устройств и систем, которые нас окружают, от утюга, до космического аппарата, разница лишь в способе контроля и управления параметром. Точно так же работает стабилизатор напряжения.

Структурная схема такого стабилизатора изображена на рисунке.

Работу стабилизатора можно сравнить с регулировкой воды, бегущей из водопроводного крана. Человек подходит к крану, открывает его, а потом, наблюдая за потоком воды, регулирует его подачу в большую, или меньшую сторону, добиваясь оптимального для себя потока. Сам человек выполняет функцию схемы сравнения, в качестве эталона выступает представление человека о том, какой поток воды должен быть, а в качестве схемы управления выступает водопроводный кран, который управляется схемой сравнения (человеком). Если человек изменит своё представление об эталоне, решив, что поток воды, бегущий из крана недостаточный, то он откроет его больше. В стабилизаторе напряжения точно так же. Если у нас появляется желание изменить выходное напряжение, тогда мы можем изменить эталонное (опорное) напряжение. Схема сравнения, заметив изменение эталонного напряжения, самостоятельно изменит и выходное напряжение.

Резонным будет вопрос: Зачем нам такое нагромождение схем, если можно на выходе использовать источник уже "готового" эталонного напряжения? Дело в том, что источник эталонного (далее по тексту – опорного) напряжения – слаботочный (низкоамперный), поэтому не способен питать мощную (низкоомную) нагрузку. Такой источник опорного напряжения можно использовать в качестве стабилизатора для питания схем и устройств, потребляющих малый ток – КМОП-микросхем, слаботочных усилительных каскадов и др.

Схема источника опорного напряжения (слаботочного стабилизатора) изображена ниже. По своей сути – это специальный делитель напряжения, описанный в статье, отличие его в том, что в качестве второго резистора используется специальный диод – стабилитрон. В чём особенность стабилитрона? Простыми словами , стабилитрон, это такой диод, который в отличие от обычного выпрямительного диода, при достижении определённого значения обратно приложенного напряжения (напряжения стабилизации) пропускает ток в обратном направлении, а при его дальнейшем повышении, уменьшая своё внутреннее сопротивление, стремится удержать его на определённом значении.

На вольтамперной характеристике (ВАХ) стабилитрона режим стабилизации напряжения изображен в отрицательной области прикладываемого напряжения и тока.

По мере увеличения обратного напряжения, прикладываемого к стабилитрону, он сначала "сопротивляется" и ток, протекающий через него минимален. При определённом напряжении, ток стабилитрона начинает увеличиваться. Достигается такая точка вольтамперной характеристики (точка 1 ), после которой дальнейшее увеличение напряжения на делителе "резистор – стабилитрон" не вызывает увеличения напряжения на p-n переходе стабилитрона. На этом участке ВАХ происходит увеличение напряжения лишь на резисторе. Ток, проходящий через резистор и стабилитрон продолжает расти. От точки 1 , соответствующей минимальному току стабилизации, до определённой точки 2 вольтамперной характеристики, соответствующей максимальному току стабилизации стабилитрон работает в требуемом режиме стабилизации (зелёный участок ВАХ). После точки 2 вольтамперной характеристики стабилитрон теряет свои "полезные" свойства, начинает греться и может выйти из строя. Участок от точки 1 до точки 2 является рабочим участком стабилизации, на котором стабилитрон выступает в качестве регулятора.

Зная, как рассчитывается простейший делитель напряжения на резисторах можно элементарно рассчитать цепь стабилизации (источник опорного напряжения). Как и в делителе напряжения, в цепи стабилизации протекают два тока – ток делителя (стабилизатора) I ст и ток нагрузочной цепи I нагр . В целях "качественной" стабилизации последний должен быть на порядок меньше первого.

Для расчётов цепи стабилизации используются значения параметров стабилитронов, публикуемые в справочниках:

  • Напряжение стабилизации U ст ;
  • Ток стабилизации I ст (обычно - средний);
  • Минимальный ток стабилизации I ст.min ;
  • Максимальный ток стабилизации I ст.max .

Для расчёта стабилизатора, как правило, используются только два первых параметра - U ст , I ст , остальные применяются для расчёта схем защиты по напряжению, в которых возможно значительное изменение входного напряжения.

Для повышения напряжения стабилизации можно использовать цепочку из последовательно соединённых стабилитронов, но для этого, допустимый ток стабилизации таких стабилитронов должен быть в пределах параметров I ст.min и I ст.max , иначе существует вероятность выхода стабилитронов из строя.

Следует добавить, что простые выпрямительные диоды также обладают свойствами стабилизации обратно приложенного напряжения, только значения напряжений стабилизации лежат на более высоких значениях обратно приложенного напряжения. Значения максимального обратно приложенного напряжения выпрямительных диодов обычно указывается в справочниках, а напряжение при котором проявляется явление стабилизации обычно выше этого значения и для каждого выпрямительного диода, даже одного типа, различно. Поэтому, используйте выпрямительные диоды в качестве стабилитрона высоковольтного напряжения только в самом крайнем случае, когда не сможете найти необходимый Вам стабилитрон, или сделать цепочку из стабилитронов. В этом случае, напряжение стабилизации определяется экспериментально. Необходимо соблюдать осторожность при работе с высоким напряжением.

Порядок расчёта стабилизатора напряжения (источника опорного напряжения)

Расчет простейшего стабилизатора напряжения мы проведём с рассмотрением конкретного примера.
Исходные, предъявляемые к схеме параметры:

1. Входное напряжение делителя - U вх (может быть стабилизированным, а может и нет). Допустим, что U вх = 25 вольт;

2. Выходное напряжение стабилизации - U вых (опорное напряжение). Допустим, что нам необходимо получить U выx = 9 вольт. Решение:

1. Исходя из необходимого напряжения стабилизации, по справочнику подбирают необходимый стабилитрон. В нашем случае это Д814В .

2. Из таблицы находят средний ток стабилизации - I ст . По таблице он равен 5 мА.

3. Вычисляют напряжение, падающее на резисторе - U R1 , как разность входного и выходного стабилизированного напряжения. U R1 = U вx - U выx ---> U R1 = 25 – 9 = 16 вольт

4. По закону Ома делят это напряжение на ток стабилизации, протекающий через резистор, и получают значение сопротивления резистора. R1 = U R1 / I ст ---> R1 = 16 / 0,005 = 3200 Ом = 3,2 кОм

Если полученного значения нет в резистивном ряде, выберите ближайший по номиналу резистор. В нашем случае это резистор номиналом 3,3 кОм .

5. Вычисляют минимальную мощность резистора, помножив падение напряжения на нём на протекающий ток (ток стабилизации). Р R1 = U R1 * I ст ---> Р R1 = 16 * 0,005 = 0,08 Вт

Учитывая, что через резистор кроме тока стабилитрона протекает ещё и выходной ток, поэтому выбирают резистор, мощностью не менее, чем в два раза больше вычисленной. В нашем случае это резистор мощностью не меньшей 0,16 Вт . По ближайшему номинальному ряду (в большую сторону) это соответствует мощности 0,25 Вт .

Вот и весь расчёт.

Как было написано ранее, простейшую цепочку стабилизатора постоянного напряжения можно использовать для питания схем, в которых используют малые токи, а для питания более мощных схем они не годятся.

Одним из вариантов повышения нагрузочной способности стабилизатора постоянного напряжения является использование эмиттерного повторителя. На схеме изображён каскад стабилизации на биполярном транзисторе . Транзистор "повторяет" приложенное к базе напряжение.

Нагрузочная способность такого стабилизатора возрастает на порядок. Недостатком такого стабилизатора, как и простейшей цепочки состоящей из резистора и стабилитрона, является невозможность регулировки выходного напряжения.

Выходное напряжение такого каскада будет меньше напряжения стабилизации стабилитрона на значение падения напряжения на p-n переходе "база – эмиттер" транзистора. В статье, я писал, что для кремниевого транзистора оно равно – 0,6 … 0,7 вольта, для германиевого транзистора – 0,2 … 0,3 вольта. Обычно грубо считают – 0,65 вольта и 0,25 вольта.

Поэтому, например при использовании кремниевого транзистора, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет на 0,65 вольта меньше, т.е – 8,35 вольта.

Если вместо одного транзистора использовать составную схему включения транзисторов, то нагрузочная способность стабилизатора возрастёт ещё на порядок. Здесь также, как и в предыдущей схеме следует учитывать уменьшение выходного напряжения за счёт его падения на p-n переходах "база – эмиттер" транзисторов. В данном случае, при использовании двух кремниевых транзисторов, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет уже на 1,3 вольта меньше (по 0,65 вольт на каждый транзистор), т.е – 7,7 вольта. Поэтому, при проектировании подобных схем необходимо учитывать такую особенность и подбирать стабилитрон с учётом потерь на переходах транзисторов.

Рассчитанное таким образом сопротивление позволяет более эффективно гасить реактивную составляющую выходного транзистора и полноценно использовать мощностные способности обоих транзисторов. Не забывайте производить расчёт требуемой мощности резисторов, иначе всё сгорит в неподходящий момент. Выход из строя резистора R2 может привести к выходу из строя транзисторов и того, что Вы подключите в качестве нагрузки. Расчёт мощности стандартный, описанный на страничке.

Как выбрать транзистор для стабилизатора?

Основные параметры для транзистора в стабилизаторе напряжения: максимальный ток коллектора, максимальное напряжение "коллектор-эмитер" и максимальная мощность. Все эти параметры всегда имеются в справочниках.
1. При выборе транзистора необходимо учитывать, что паспортный (по справочнику) максимальный ток коллектора должен быть не менее, чем в полтора раза больше максимального тока нагрузки, который вы хотите получить на выходе стабилизатора. Это делается для того, чтобы обеспечить запас по току нагрузки при случайных кратковременных бросках нагрузки (например короткого замыкания). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

2. Максимальное напряжение "коллектор-эмитер" характеризует способность транзистора выдерживать определённое напряжение между коллектором и эмитером в закрытом состоянии. В нашем случае этот параметр должен также превышать не менее, чем в полтора раза напряжение подводимое к стабилизатору от цепи "трансформатор-выпрямитель-фильтр питания" вашего блока стабилизированного питания.

3. Паспортная выходная мощность транзистора должна обеспечивать работу транзистора в режиме "полуоткрытого" состояния. Всё напряжение, которое вырабатывается цепочкой "трансформатор-выпрямительный мост-фильтр питания" делится на две нагрузки: собственно нагрузка вашего блока стабилизированного питания и сопротивление коллекторно-эмитерного перехода транзистора. По обоим нагрузкам течёт один и тот же ток, поскольку они подключены последовательно, а вот напряжение делится. Из этого следует, что необходимо выбрать такой транзистор, который при заданном токе нагрузки способен выдерживать разницу между напряжением, вырабатываемым цепочкой "трансформатор-выпрямительный мост-фильтр питания" и выходным напряжением стабилизатора. Мощность вычисляется как произведение напряжения на ток (из учебника физики средней школы).

Например: На выходе цепи "трансформатор-выпрямительный мост-фильтр питания" (а значит на входе стабилизатора напряжения) напряжение равно 18 вольт. Нам необходимо получить выходное стабилизированное напряжение 12 вольт, при токе нагрузки 4 ампера.

Находим минимальное значение необходимого паспортного тока коллектора (Iк max):
4 * 1,5 = 6 ампер

Определяем минимальное значение необходимого напряжения "коллектор-эмитер" (Uкэ):
18 * 1,5 = 27 вольт

Находим среднее напряжение, которое в рабочем режиме будет "падать" на переходе "коллектор-эмитер", и тем самым поглощаться транзистором:
18 - 12 = 6 вольт

Определяем потребную номинальную мощность транзистора:
6 * 4 = 24 ватт

При выборе типа транзистора необходимо учитывать, что паспортная (по справочнику) максимальная мощность транзистора должна быть не менее, чем в два - три раза больше номинальной мощности падающей на транзисторе. Это делается для того, чтобы обеспечить запас по мощности при различных бросках тока нагрузки (а следовательно и изменения падающей мощности). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

В нашем случае необходимо выбрать транзистор с паспортной мощностью (Рк) не менее:
24 * 2 = 48 ватт

Выбираете любой транзистор, удовлетворяющий этим условиям, с учётом, что чем паспортные параметры будут намного больше расчётных, тем меньше по размерам потребуется радиатор охлаждения (а может и вообще не нужен будет). Но при чрезмерном превышении этих параметров учитывайте тот факт, что чем больше выходная мощность транзистора, тем меньше его коэффициент передачи (h21), а это ухудшает коэффициент стабилизации в источнике питания.

В следующей статье мы рассмотрим. В нём используется принцип контроля выходного напряжения мостовой схемой. Он обладает меньшей пульсацией выходного напряжения, чем "эмиттерный повторитель", кроме того, он позволяет регулировать выходное напряжение в небольших пределах. На его основе будет рассчитана простая схема стабилизированного блока питания.

Многие люди знают, что такое перебои и скачки напряжения в электрической сети. Одно дело, когда от этого просто мигают лампочки, и могут сгореть. А другое дело, когда от перепадов напряжения сгорит стиральная машина или холодильник. Это существенно ударит по семейному бюджету. Импортная бытовая техника не рассчитана на такие скачки напряжения, которые часто происходят в отечественных сетях. Чтобы защитить себя от риска возникновения неисправностей в домашних бытовых устройствах, необходимо обзавестись стабилизатором напряжения, который выбирается по суммарной мощности устройств, которые будут работать в вашей домашней сети. Чтобы разобраться в том, какие стабилизаторы напряжения подходят конкретно для вашего случая, необходимо разобраться в существующих типах приборов, и их особенностях.

Разновидности

Стабилизаторы напряжения – это приборы, которые выравнивают величину напряжения питания до тех параметров, которые соответствуют стандартным значениям, а также очищают напряжение от высокочастотных помех. Вид стабилизатора определяет тип основного встроенного механизма, который выполняет функции стабилизатора. Рассмотрим основные виды стабилизаторов.

Стабилизаторы напряжения делятся на два основных вида:

  1. Накапливающие.
  2. Корректирующие.

Первый вид стабилизаторов в настоящее время не используется, так как они имеют большие размеры. Ранее они использовались в сфере производства, а не в бытовых условиях. Стабилизаторы напряжения накапливающего действия функционируют с помощью накопления электрической энергии в емкости, и далее получают от этой емкости необходимый электрический ток с нужными параметрами. По аналогичному принципу работают источники бесперебойного питания.

Корректирующие стабилизаторы напряжения чаще всего включают в себя блок управления. Он реагирует на перепады напряжения в одну или другую сторону, и при этом подключает соответствующую обмотку трансформатора. Корректирующие стабилизаторы нашли широкое применение в бытовых условиях.

Они в свою очередь разделяются на несколько видов:

  • Релейные.
  • Электронные (тиристорные).
  • Феррорезонансные.
  • Электромеханические.
  • Инверторные.
  • Линейные.

Конструктивные особенности и работа

Корректирующий тип стабилизаторов стал наиболее популярным в быту, поэтому все его виды рассмотрим подробнее.

Релейные стабилизаторы напряжения стали наиболее популярными, ввиду их невысокой стоимости и качества работы. Основным достоинством релейных стабилизаторов является их быстродействие. Они очень быстро срабатывают при изменениях напряжения, и возвращают его величину в стандартные пределы, осуществляя этим защиту бытовых устройств.

Из недостатков можно отметить, что при срабатывании реле возникает резкий скачок напряжения величиной 5-15 вольт, в зависимости от фирмы изготовителя. Для бытовой техники такой скачок не окажет негативного влияния, однако освещение при этом будет мигать заметно. Поэтому при работе релейного стабилизатора иногда наблюдается моргание , в то время, как на это не реагируют.

Как и в других видах стабилизатора, основным элементом релейной модели является и блок управления на полупроводниковых элементах. Электронный блок стабилизатора выполнен в виде мощного микроконтроллера, который анализирует напряжение на входе и выходе. В результате он вырабатывает сигналы управления для силовых реле или ключей. Микроконтроллер при создании напряжения управления учитывает время срабатывания силовых реле и ключей. Это дает возможность выполнять коммутацию цепей без их разрыва. В итоге форма графика выходного напряжения становится идентичной входной форме напряжения.

Электронные стабилизаторы напряжения

Тиристорные стабилизаторы работают по принципу, который основан на автоматической коммутации разных обмоток трансформатора силовыми ключами в виде . Такой принцип похож на действие релейных приборов. Отличие релейных стабилизаторов состоит в том, что у них нет механических контактов, имеется большее количество ступеней выравнивания напряжения и высокая точность работы 2-5%.

Электронные приборы не создают шума в доме, так как отсутствуют механические реле. Их заменяют электронные ключи. Тиристорные стабилизаторы работают с большим КПД.

При практическом применении электронные модели показали себя чувствительными устройствами, на которые отрицательно влияет перегрев. Отечественные производители выпускают чаще всего именно такой вид стабилизаторов.

Самым серьезным недостатком тиристорных моделей является их высокая стоимость. Гарантийный срок работы практически всех видов стабилизаторов находится в пределах 1-3 лет, в зависимости от фирмы изготовителя.

Феррорезонансные

Их действие основывается на изменении величины индуктивности катушек, имеющих металлический сердечник, при изменении тока. Последовательно с первичной обмоткой трансформатора подключают емкость С1. Она совместно с первичной обмоткой образует резонансный контур, который настроен на частоту сети, равную 50 герц.

Величина конденсатора зависит от мощности трансформатора. При мощности трансформатора до 60 ватт, конденсатор применяют величиной до 12 мкФ. Чтобы создать значительную мощность стабилизатора, используют дроссель насыщения.

При небольшом сетевом напряжении по дросселю проходит малый ток, и индуктивность дросселя большая. Основная часть тока протекает по параллельно подключенному конденсатору. При этом суммарное сопротивление этой цепи имеет емкостный тип.

Конденсатор компенсирует некоторую часть индуктивного сопротивления катушки трансформатора. При этом ток катушки повышается. Выходное напряжение трансформатора также увеличивается. Это характерно для эффекта резонанса напряжений.

При увеличении напряжения, ток дросселя также повышается, а его индуктивность падает. Величина емкости рассчитывается так, чтобы в контуре дроссель – конденсатор наступил резонанс, при котором сопротивление этого контура было бы наибольшим, а ток, приходящий из сети питания на трансформатор – наименьшим.

При увеличении напряжения сети увеличивается сопротивление контура до момента резонанса. Это дает возможность стабилизироваться напряжению на трансформаторе при больших перепадах напряжения.

Достоинством феррорезонансных приборов является надежность и простота. Недостатком является значительная зависимость напряжения на выходе прибора от частоты тока и искажение формы напряжения. Также, стабилизаторы с насыщенными сердечниками катушек обладают большим магнитным рассеянием. Это отрицательно влияет на функционирование окружающих устройств и на человека.

Электромеханические стабилизаторы напряжения

Принцип действия такого прибора довольно простой. Щетки из графита при перепадах напряжения передвигаются по катушке трансформатора, тем самым регулируется и подстраивается выходное напряжение.

В первых образцах электромеханических стабилизаторов для передвижения щеток использовался ручной способ (переключателем). Пользователь должен был постоянно контролировать показания индикатора напряжения.

В новых моделях приборов эта функция выполняется автоматически небольшим моторчиком, который при перепадах напряжения передвигает щетку по обмотке трансформатора.

Преимуществами таких стабилизаторов является простота и надежность устройства, повышенный КПД. Из недостатков можно отметить малое быстродействие при перепадах напряжения, а также быстрый износ механических деталей. Поэтому электромеханический вид стабилизатора требует постоянного обслуживания в виде контроля и замены щеток.

Инверторные стабилизаторы напряжения преобразуют постоянный ток в переменный, а также выполняют обратное действие, то есть, преобразуют переменный ток в постоянный с помощью микроконтроллера и кварцевого генератора.

Из достоинств инверторных стабилизаторов можно выделить малый шум при работе прибора, компактные размеры и широкий интервал входных рабочих напряжений, который колеблется в пределах 115-290 вольт.

Недостатком инверторных образцов является высокая стоимость, в отличие от многих других видов стабилизаторов.

Линейные стабилизаторы напряжения выполнены в виде делителя напряжения. Нестабильное напряжение подается на вход такого устройства, а выровненное напряжение выходит с нижнего плеча делителя. Выравнивание выполняется изменением сопротивления плеча делителя напряжения. При этом величина сопротивления поддерживается такой величины, при которой выходное напряжение прибора было в определенных пределах.

При значительном отношении величин выходного и входного напряжений линейный стабилизатор обладает пониженным КПД, так как значительная часть мощности рассеивается в тепло на элементе настройки. Поэтому регулятор напряжения обычно монтируют на теплоотводящем радиаторе для возможности рассеивания тепла.

Достоинством линейного прибора является отсутствие помех, простота конструкции и малое число деталей. Недостатком является малый КПД, большое выделение тепла.

Рассмотрим, на что необходимо обратить внимание при покупке стабилизатора:

  • Способ монтажа. Он бывает настенным, с горизонтальной или вертикальной установкой (для стационарных приборов). Может устанавливаться рядом с устройством, для которого он приобретается.
  • Точность работы, входное и выходное напряжение. Эта характеристика зависит в основном от параметров входного напряжения. Лучше выбрать наименьший показатель точности прибора от 1 до 3%, при напряжении 220 вольт.
  • Мощность стабилизатора выбирается не только мощностью подключаемого электрического устройства. К этой величине добавляется определенный резерв мощности. Для всей квартиры этот запас должен быть в пределах 30%.
  • Число фаз сети питания (однофазная или трехфазная сеть).
  • Быстродействие (время реакции на перепады напряжения), в миллисекундах.
  • Защита стабилизатора. Дорогие образцы приборов чаще всего оснащены защитными системами, которые предохраняют стабилизатор от коротких замыканий, резких изменений напряжения и других отрицательных явлений.
  • Габаритные размеры прибора и его шумность при функционировании.
  • Стоимость. Профессионалы не рекомендуют покупать дешевые китайские подделки, так как не стоит экономить на качестве стабилизатора. Качественный прибор не должен стоить дешево. Лучше приобрести отечественную модель, или прибор европейского производства.
  • Гарантийный срок играет большую роль при выборе любого устройства. Если прибор китайский, то вряд ли на него будет какая-то гарантия. Стабилизаторы, приобретенные в специализированных торговых точках можно за время гарантийного периода бесплатно обменять при возникновении неисправности или обнаружения брака.

Наибольшую трудность обычно вызывает при выборе прибора его мощность. Кроме активной составляющей мощности, которую расходуют бытовые устройства, некоторые из них обладают . Она появляется при наличии (если в устройстве имеется мощный электрический мотор). При его запуске ток повышается в несколько раз. Если выбрать стабилизатор без учета этой реактивной составляющей мощности, то он может не справиться с высокой нагрузкой при запуске устройства, имеющего электродвигатель.

Другим фактором, который значительно влияет на выбор стабилизатора, является коэффициент трансформации, который равен нулю, если стабилизатор функционирует в идеальных условиях. То есть, на вход поступает ровно 220 вольт, и выходит точно такая же величина к потребителю. А если стабилизатору приходится выравнивать напряжение, то мощность снижается.