Энергоэффективные здания и сооружения. Научные основы проектирования энергоэффективных зданий

12.03.2024

Энергосберегающий дом – это не идеализированное представление дома будущего, а сегодняшняя реальность, которая приобретает все большую популярность. Энергосебергающим, энергоэффективным, пассивным домом или экодомом сегодня называют такое жилище, которое требует минимум расходов на поддержание комфортных условий проживания в нем. Достигается это путем соответствующих решений в сфере , и строительства. Какие технологии для энергосберегающих домов существуют на данный момент, и сколько ресурсов они смогут сэкономить?

№1. Проектирование энергосберегающего дома

Жилище будет максимально экономным, если оно было спроектировано с учетом всех энергосберегающих технологий. Переделать уже построенный дом будет сложнее , дороже, да и ожидаемых результатов добиться будет трудно. Проект разрабатывается опытными специалистами с учетом требований заказчика, но при этом нужно помнить, что использованный набор решений должен быть, прежде всего, экономически выгодным. Важный момент – учет климатических особенностей региона .

Как правило, энергосберегающими делают дома, в которых проживают постоянно, поэтому на первое месте выходит задача сбережения тепла, максимального использования естественного освещения и т.д. Проект должен учитывать индивидуальные требования, но лучше, если пассивный дом будет максимально компактным, т.е. более дешевым в содержании .

Одним и тем же требованиям могут отвечать различные варианты . Совместное принятие решений лучших архитекторов, проектировщиков и инженеров позволили еще на стадии разработки плана возведения помещения создать универсальный энергосберегающий каркасный дом (подробнее читайте — ). Уникальная конструкция кооперирует в себе все экономически выгодные предложения:

  • благодаря технологии SIP-панелей строение обладает высокой прочностью;
  • достойный уровень термо- и шумоизоляции, а также отсутствие мостиков холода;
  • сооружение не требует привычной дорогой системы отопления;
  • с использованием каркасных панелей дом строится очень быстро и характеризуется длительным сроком службы;
  • помещения компактны, комфортны и удобны во время их последующей эксплуатации.

В качестве альтернативы можно использовать для возведения несущих стен, утепляя конструкцию со всех сторон и получая в итоге большой «термос». Часто используется древесина как самый экологичный материал.

№2. Архитектурные решения для энергосберегающего дома

Чтобы добиться экономии ресурсов, необходимо уделить внимание планировке и внешнему виду дома. Жилище будет максимально энергосберегающим, если учтены такие нюансы:

  • правильное расположение . Дом может быть расположен в меридиональном или широтном направлении и получать разное солнечное облучение. Северный дом лучше строить меридионально , чтобы увечить приток солнечного света на 30%. Южные дома, наоборот, лучше возводить в широтном направлении, чтобы уменьшить затраты на кондиционирование воздуха;
  • компактность , под которой в данном случае понимают соотношение внутренней и внешней площади дома. Оно должно быть минимальным, а достигается это за счет отказа от выпирающих помещений и архитектурных украшений типа эркеров. Получается, что самый экономный дом – это параллелепипед;
  • тепловые буферы , которые отделяют жилые помещения от контакта с окружающей средой. Гаражи, лоджии, подвалы и нежилые чердаки станут отличной преградой для проникновения в комнаты холодного воздуха извне;

  • правильное естественное освещение . Благодаря несложным архитектурным приемам можно в течение 80% всего рабочего времени освещать дом с помощью солнечных лучей. Помещения, где семья проводит больше всего времени (гостиная, столовая, детская) лучше расположить на южной стороне , для кладовой, санузлов, гаража и прочих вспомогательных помещений достаточно рассеянного света, поэтому они могут иметь окна на северную сторону. Окна на восток в спальне утром обеспечат зарядом энергии, а вечером лучи не будут мешать отдыхать. Летом в такой спальне можно будет вообще обойтись без искусственного света. Что же касается размера окон , то ответ на вопрос зависит от приоритетов каждого: экономить на освещении или на обогреве. Отличный прием – установка солнечной трубы . Она имеет диаметр 25-35 см и полностью зеркальную внутреннюю поверхность: принимая солнечные лучи на крыше дома, она сохраняет их интенсивность на входе в комнату, где они рассеиваются через диффузор. Свет получается настолько ярким, что после установки пользователи часто тянутся к выключателю при выходе из комнаты;

  • кровля . Многие архитекторы рекомендуют делать максимально простые крыши для энергосберегающего дома. Часто останавливаются на двухскатном варианте, причем чем более пологим он будет, тем более экономным окажется дом. На пологой крыше будет задерживаться снег, а это дополнительное утепление зимой.

№3. Теплоизоляция для энергосберегающего дома

Даже построенный с учетом всех архитектурных хитростей дом требует правильного утепления, чтобы быть полностью герметичным и не выпускать теплоту в окружающую среду.

Теплоизоляция стен

Через стены уходит около 40% тепла из дома , поэтому их утеплению уделяют повышенное внимание. Самый распространенный и простой способ утепления – организация многослойной системы. обшиваются утеплителем, в роли которого часто выступает минеральная вата или пенополистирол , сверху монтируется армирующая сетка, а потом – базовый и основной слой штукатурки.

Более дорогая и прогрессивная технология – вентилируемый фасад . Стены дома обшиваются плитами из минеральной ваты, а облицовочные панели из камня, металла или других материалов монтируются на специальный каркас. Между слоем утеплителя и каркасом остается небольшой зазор, который играет роль «тепловой подушки», не позволяет намокать теплоизоляции и поддерживает оптимальные условия в жилище.

Кроме того, чтобы снизить теплопотери через стены, используют изолирующие составы в местах примыкания кровли, учитывают будущую усадку и изменение свойств некоторых материалов при повышении температуры.

Принцип работы вентилируемого фасада

Теплоизоляция кровли

Через кровлю уходит около 20% тепла. Для утепления крыши используют те же материалы, что и для стен. Широко распространены на сегодняшний день минеральная вата и пенополистирол . Архитекторы советуют делать кровельную теплоизоляцию не тоньше 200 мм независимо от типа материала. Важно рассчитать нагрузку на , несущие конструкции и кровлю, чтобы не была нарушена целостность конструкции.

Теплоизоляция оконных проемов

На окна приходится 20% теплопотерь дома. Хоть лучше, чем старые деревянные окна, защищают дом от сквозняков и изолируют помещение от внешнего воздействия, они не идеальны.

Более прогрессивными вариантами для энергосберегающего дома являются:


Теплоизоляция пола и фундамента

Через фундамент и пол первого этажа теряется по 10% теплоты. Пол утепляют теми же материалами, что и стены, но можно использовать и другие варианты: наливные теплоизоляционные смеси, пенобетон и газобетон, гранулобетон с рекордной теплопроводностью 0,1 Вт/(м°С). Можно утеплить не пол, а потолок подвала, если подобный предусмотрен проектом.

Фундамент лучше утеплять снаружи, что поможет защитить его не только от промерзания, но и от других негативных факторов, в т.ч. влияния грунтовых вод, перепадов температур и т.д. В целях утепления фундамента используют напыляемый полиуретан, и пенопласт.

№4. Рекуперация тепла

Тепло из дома уходит не только через стены и кровлю, но и через . Чтобы уменьшить расходы на отопление используют приточно-вытяжные вентиляции с рекуперацией.

Рекуператором называют теплообменник, который встраивается в систему вентиляции. Принцип его работы заключается в следующем. Нагретый воздух через вентиляционные каналы выходит из комнаты, отдает свое тепло рекуператору, соприкасаясь с ним. Холодный свежий воздух с улицы, проходя сквозь рекуператор, нагревается, и поступает в дом уже комнатной температуры. В результате домочадцы получают чистый свежий воздух, но не теряют тепло.

Подобная система вентиляции может использоваться вместе с естественной: воздух будет поступать в помещение принудительно, а выходить за счет естественной тяги. Есть еще одна хитрость. Воздухозаборный шкаф может быть отнесен от дома на 10 метров, а воздуховод проложен под землей на глубине промерзания . В этом случае еще до рекуператора летом воздух будет охлаждаться, а зимой – нагреваться за счет температуры почвы.

№5. Умный дом

Чтобы сделать жизнь более комфортной и при этом экономить ресурсы, можно и техникой , благодаря которым уже сегодня возможно:

№6. Отопление и горячее водоснабжение

Гелиосистемы

Самый экономный и экологичный способ отапливать помещение и подогревать воду – это использовать энергию солнца. Возможно это благодаря солнечным коллекторам, установленным на крыше дома. Такие устройтсва легко подсоединяются к системе отопления и горячего водоснабжения дома, а принцип их работы заключается в следующем . Система состоит из самого коллектора, теплообменного контура, бака-аккумулятора и станции управления. В коллекторе циркулирует теплоноситель (жидкость), который нагревается за счет энергии солнца и через теплообменник отдает тепло воде в баке-аккумуляторе. Последний за счет хорошей теплоизоляции способен долго сохранять горячую воду. В этой системе может быть установлен нагреватель-дублер, который догревает воду до необходимой температуры в случае пасмурной погоды или недостаточной продолжительности солнечного сияния.

Коллекторы могут быть плоскими и вакуумными . Плоские представляют собой коробку, закрытую стеклом, внутри нее находится слой с трубками, по которым циркулирует теплоноситель. Такие коллекторы более прочные, но сегодня вытесняются вакуумными. Последние состоят из множества трубок, внутри которых находятся еще трубка или несколько с теплоносителем. Между внешней и внутренней трубками – вакуум, который служит теплоизолятором. Вакуумные коллекторы более эффективны, даже зимой и в пасмурную погоду, ремонтопригодны. Срок службы коллекторов около 30 лет и более.

Тепловые насосы

Тепловые насосы используют для отопления дома низкопотенциальное тепло окружающей среды , в т.ч. воздуха, недр и даже вторичное тепло, например от трубопровода центрального отопления. Состоят такие устройства из испарителя, конденсатора, расширительного вентиля и компрессора. Все они связаны замкнутым трубопроводом и функционируют на основе принципа Карно. Проще говоря, теплонасос подобен по работе холодильнику, только функционирует наоборот. Если в 80-х годах прошлого века тепловые насосы были редкостью и даже роскошью, то уже сегодня в Швеции, например, 70% домов отапливаются подобным образом.

Конденсационные котлы

Биогаз в качестве топлива

Если скапливается много органических отходов сельского хозяйства, то можно соорудить биореактор для получения биогаза . В нем биомасса благодаря анаэробным бактериям перерабатывается, в результате чего образуется биогаз, состоящий на 60% из метана, 35% — углекислого газа и на 5% из прочих примесей. После процесса очистки он может использоваться для отопления и горячего водоснабжения дома. Переработанные отходы преобразуются в отличное удобрение, которое может использоваться на полях.

№7. Источники электроэнергии

Энергосберегающий дом должен и, желательно, получать ее из возобновляемых источников. На сегодняшний день для этого реализована масса технологий.

Ветрогенератор

Энергия ветра может преобразовываться в электричество не только большими ветряными установками, но и с помощью компактных «домашних» ветряков . В ветряной местности такие установки способны полностью обеспечивать электроэнергией небольшой дом, в регионах с невысокой скоростью ветра их лучше использовать вместе с солнечными батареями.

Сила ветра приводит в движение лопасти ветряка, которые заставляют вращаться ротор генератора электроэнергии. Генератор вырабатывает переменный нестабильный ток, который выпрямляется в контроллере. Там происходят зарядка аккумуляторов, которые, в свою очередь, подключены к инверторам, где и идет преобразование постоянного напряжения в переменное, используемое потребителем.

Ветряки могут быть с горизонтальной и вертикальной осью вращения. При разовых затратах они надолго решают проблему энергонезависимости.

Солнечная батарея

Использование солнечного света для производства электроэнергии не так распространено, но уже в ближайшем будущем ситуация рискует резко измениться. Принцип работы солнечной батареи очень прост: для преобразования солнечного света в электричество используется p-n переход. Направленное движение электронов, провоцируемое солнечной энергией, и представляет собой электричество.

Конструкции и используемые материалы постоянно совершенствуются, а количество электроэнергии напрямую зависит от освещенности. Пока наибольшей популярностью пользуются разные модификации кремниевых солнечных батарей , но альтернативой им становятся новые полимерные пленочные батареи, которые пока находятся в стадии развития.

Экономия электроэнергии

Полученное электричество нужно уметь расходовать с умом. Для этого пригодятся следующие решения:


№8. Водоснабжение и канализация

В идеале, энергосберегающий дом должен получать воду из скважины , расположенной под жилищем. Но когда вода залегает на больших глубинах или качество ее не отвечает требованиям, от подобного решения приходится отказываться.

Бытовые стоки лучше пропускать через рекуператор и отбирать у них теплоту. Для очистки сточных вод можно использовать септик , где преобразование будет совершаться за счет анаэробных бактерий. Полученный компост является хорошим удобрением.

Для экономии воды неплохо бы уменьшить объем сливаемой воды. Кроме того, можно воплотить в жизнь систему, когда вода, используемая в ванной и раковине, применяется для слива в унитазе.

№9. Из чего строить энергосберегающий дом

Конечно же, лучше использовать максимально природное и натуральное сырье, производство которого не требует многочисленных стадий обработки. Это древесина и камень . Предпочтение лучше отдавать материалам, производство которых осуществляется в регионе, ведь таким образом снижаются растраты на транспортировку. В Европе пассивные дома стали строить из продуктов переработки неорганического мусора. , стекло и металл.

Если один раз уделить внимание изучению энергосберегающих технологий, продумать проект экодома и вложить в него средства, в последующие годы расходы на его содержание будут минимальными или даже стремиться к нулю.

В настоящее время в Москве начато строительство высотных зданий. Известно мнение специалистов, что каждое высотное здание представляет собой уникальное явление, требующее тщательных фундаментальных разнохарактерных исследований специалистов, и не случайно Российская академия архитектуры и строительных наук (РААСН) дважды обсуждала этот вопрос на академических чтениях, проходящих под председательством академика А. П. Кудрявцева, президента РААСН.

Интерес к строительству высотных зданий в Москве вызван прежде всего экономическими соображениями. С точки зрения инвестора, увеличение на фундаменте количества квадратных метров выгодно, а поэтому и выгодно строительство высотных зданий. По этой же причине в Москве планируется строительство именно жилых высотных зданий, в отличие от других стран, где возводятся главным образом высотные здания общественного назначения. Следует отметить, что чем здание выше, тем оно дороже в эксплуатации. Эта проблема приобретает особенную актуальность в свете предстоящей жилищно-коммунальной реформы.

Одним из путей снижения эксплуатационных затрат является строительство энергоэффективных высотных зданий. Энергоэффективными называются такие здания, при проектировании которых был предусмотрен комплекс архитектурных и инженерных мероприятий, обеспечивающих существенное снижение затрат энергии на теплоснабжение этих зданий по сравнению с обычными (типовыми) зданиями при одновременном повышении комфортности микроклимата в помещениях. Методология проектирования энергоэффективного высотного здания должна основываться на системном анализе здания как единой энергетической системы. Представление энергоэффективного высотного здания как суммы независимых инновационных решений нарушает принципы системности и приводит к потере энергетической эффективности проекта.

Каждое высотное здание уникально и не может быть построено обычными темпами. Существующие здания прошли длительный период создания, в их проектировании участвовало большое число высококвалифицированных специалистов разного профиля. Высотные здания тем более требуют тщательной проработки еще на стадии проектирования. Например, проектирование и строительство самого высокого в Европе здания «Commerzbank» во Франкфурте-на-Майне, Германия, продолжалось восемь лет. В создании этого здания участвовали специалисты разных стран: архитектор — англичанин Норман Фостер (Norman Foster); конструкторы - английская фирма «Ove Arup&Partners» и немецкая «Krebs und Kiefer»; наружные ограждающие конструкции разрабатывались немецкими фирмами «Josef Gartner GmbH & Co. KG» и «Ingenieurgesellschaft Dr. Thomas Limmer mbH & Co. KG», а изготавливались итальянской компанией «Permasteelisa S.p. A.».

Рисунок 1. Треугольный замысел здания заключает в себе центральный атриум, который является частью системы естественной вентиляции

При проектировании высотных зданий также возникает проблема выбора материала конструкций здания. В США в качестве основного конструкционного материала обычно используется сталь, а в Европе - железобетон. По мнению академика В. И. Травуша, заместителя директора ЦНИИЭП им. Мезинцева, железобетонные конструкции по сравнению со стальными обладают тремя важными преимуществами: большей устойчивостью, обусловленной их большим весом; в железобетонных конструкциях быстрее затухают колебания; железобетонные конструкции более огнестойки. Именно высокие требования к огнестойкости ограничивают в Европе строительство высотных зданий с металлическими конструкциями, поскольку в случае их использования необходимо проводить дополнительные противопожарные мероприятия.

После строительства высотных зданий изменяется аэродинамика городской застройки и возникают сильные воздушные вихревые потоки, поэтому при проектировании высотных зданий требуются исследования их аэродинамики с учетом прилегающей городской застройки. Большое значение приобретают требования к сопротивлению воздухопроницанию конструкций, связанные с разностью давлений воздуха на наружной и внутренней поверхностях ограждений, существенно возрастающей с увеличением высоты. Традиционные окна не обеспечивают требуемое сопротивление воздухопроницанию, поэтому для высотных зданий необходимы специальные конструкции световых проемов.

Внутри высотных зданий также могут возникать сильные воздушные потоки (эффект аэродинамической трубы). Для их уменьшения должны применяться специальные решения - шлюзование входов в здание, шлюзование лестничных секций, высокая герметизация межэтажных перекрытий, герметизация мусоропроводов.

Большую проблему представляет обеспечение безопасности, достаточно вспомнить недавние события в Нью-Йорке. Сейчас специалисты говорят об определенных конструктивных недоработках зданий «World Trade Center», в частности, о недостаточной огнестойкости стального каркаса зданий. Однако обеспечение безопасности - это не только защита от воздушных атак. Например, механическую систему вентиляции высотных зданий необходимо оборудовать датчиками вредных веществ, которые можно распылить у воздухозаборных устройств, а также системой, автоматически отключающей в этом случае механическую вентиляцию.

Рисунок 3. Вход в здание

Уникальным примером решения проблем, возникающих при строительстве высотных зданий, является самое высокое в Европе здание «Commerzbank», построенное в Германии.

Здание «Commerzbank» во Франкфурте-на-Майне, строительство которого было завершено в мае 1997 года, является самым высоким зданием в Европе. Его высота составляет 259 метров, высота с антенной - 300 метров. Здание «Commerzbank» занимает 24-е место в мире по высоте. Ни одно другое европейское здание не входит в список пятидесяти самых высоких небоскребов мира. Однако сам по себе данный факт вряд ли привлек бы внимание специалистов к этому зданию.

Здание, разработанное британским архитектором сэром Норманом Фостером (Sir Norman Foster) и его студией «Foster and Partners» (Лондон), представляет собой радикальный пересмотр всей концепции строительства высотных зданий.

Рисунок 4. Зал на первом этаже

Большинство высотных зданий построено по традиционной американской модели: полностью кондиционируемые помещения, практически полное отсутствие естественного освещения, центральная организация построения здания и идентичные этажи. Новое здание «Commerzbank» существенно отличается от этой схемы: в нем используется главным образом естественное освещение и естественная вентиляция, имеется атриум, проходящий от уровня земли до самого верхнего этажа, и из каждого офиса или части здания открывается вид на город. Спирально по всему зданию расположены зимние сады высотой в четыре этажа - они улучшают микроклимат и создают совершенно иную рабочую обстановку.

На разработку концепции здания оказала влияние политическая и социальная атмосфера, сложившаяся после объединения Германии. Гармония с окружающей средой и энергетическая эффективность стали основными факторами при проектировании здания «Commerzbank». Реализация этих концепций позволила Норману Фостеру назвать данное здание «первым в мире экологичным высотным зданием». Как пишет Колин Дейвз (Colin Davies) в предисловии к книге «Commerzbank Frankfurt: Prototype for an Ecological High-Rise », революционный дизайн здания от «Foster and Partners» «…дает начало новой стадии в развитии экологичной, энергосберегающей и снижающей загрязнение архитектуре… Это здание создано как для сотрудников, так и для посетителей. Оно заключает в себе не только экономичную форму и эффективную планировку, но и качество пространства, физический и психологический комфорт, свет, воздух и вид на город, работу и отдых, а также ритм рабочего дня»

Рисунок 5. Схема конструкции наружных светопрозрачных ограждений:
1 - первый слой с щелевыми отверстиями;
2 – второй слой – оконный стеклопакет;
3 – солнцезащитные устройства – регулируемые жалюзи;
4 – отверстия вентилируемой прослойки

Немецкая «Партия зеленых» поддержала экологичность нового здания «Commerzbank». Поскольку «Commerzbank» при строительстве старался сохранить и защитить естественную окружающую среду при помощи инновационных конструктивных решений, городские власти дали разрешение на расширение проектной площади. На дополнительной земельной площади с восточной стороны высотного здания удалось расположить шестиэтажное здание, в котором разместились дополнительные офисные помещения, а также парковку. В результате банку «Commerzbank» удалось сосредоточить большинство своих офисов на данном участке земли и не приобретать дополнительных площадей в дорогом районе Франкфурта-на-Майне.

Архитектурно-планировочная концепция

Горизонтальная проекция башни представляет собой треугольник со скругленными вершинами и немного выпуклыми сторонами. Центральная часть здания, в которой обычно располагаются лифтовые шахты, занята огромным треугольным центральным атриумом, проходящим по всей высоте здания. Атриум является каналом естественной вентиляции для смежных офисных помещений здания (рис. 1). Норман Фостер называет центральный атриум «стеблем», а офисные этажи, расположенные вокруг атриума с трех сторон, - «лепестками».

Каждый этаж имеет три крыла, два из которых выделены под офисные помещения, а третье является частью одного из четырехэтажных зимних садов. Четырехэтажные сады - «зеленые легкие» здания, размещенные по спирали вокруг треугольной формы здания, обеспечивают для каждого яруса вид на растительность и устраняют большие объемы неразделенного офисного пространства.

Норман Фостер рассматривал растения как нечто большее, чем просто декорацию. Эти великолепные сады являются фундаментальным элементом в его концепции. Девять зимних садов по спирали окаймляют все здание: три расположены с восточной стороны, три - с южной и еще три - с западной стороны. В ботаническом аспекте растения отражают географическую направленность:

  • с восточной стороны - азиатская растительность;
  • с южной стороны - средиземноморская растительность;
  • с западной стороны - североамериканская растительность.

Открытые пространства садов высотой в четыре этажа обеспечивают внутренние офисные помещения достаточным количеством дневного света. Кроме этого, данные сады могут быть использованы сотрудниками для общения и отдыха - они создают ощущение пространства, а также являются частью сложной системы естественной вентиляции (рис. 2).

Лифты, лестничные марши и служебные помещения расположены в трех углах. Такое расположение позволяет сгруппировать офисы и зимние сады. Решетчатые балки, прикрепленные к колоннам, размещенным в трех углах здания, несут на себе каждый этаж и зимний сад. Такое решение позволило отказаться от колонн внутри здания и обеспечило конструкции дополнительную жесткость.

Рисунок 8. Схема воздушных потоков вокруг здания

53-этажное здание поднимается ввысь вместе с уже существующим зданием «Commerzbank». При этом Норману Фостеру удалось достичь сочетаемости старого и нового зданий посредством перестройки и обновления периметра граничащих зданий.

Главный вход в новое здание расположен с северной стороны, с площади Кайзерплац (Kaizerplatz). Попасть в здание можно по гигантской лестнице, покрытой стеклянной крышей (рис. 3). На первом этаже расположены отделения банков, магазины, рестораны и кафетерии, а также залы для проведения выставок и концертов (рис. 4).

Ступенчатая верхушка здания производит сильное впечатление даже на большом расстоянии. Силуэт здания создает четкий символ современного банковского района Франкфурта-на-Майне.

Ограждающие конструкции здания и солнцезащитные устройства

Для снижения затрат энергии на климатизацию здания, а также для организации естественной вентиляции светопрозрачные ограждения офисов здания сделаны двухслойными - практически уникальный прием в современном высотном строительстве. Внешняя оболочка (первый слой) имеет щелевые отверстия, через которые наружный воздух проникает в полости между слоями (рис. 5). Окна, в том числе и те, которые расположены на верхних этажах, могут быть открыты, что обеспечивает естественную вентиляцию непосредственно до уровня 50-го этажа. Окна, выходящие в атриум, также могут быть открыты.

Рисунок 9. Естественная вентиляция здания в зимний период (источник – официальный сайт студии «Foster and Partners»)

Снижение затрат энергии на отопление здания достигается использованием теплозащитного остекления с коэффициентом теплопередачи приблизительно 1,4–1,6 Вт/(м2.°C). Кроме этого, первый слой играет роль защитной оболочки, уменьшающей конвективный тепловой поток, направленный наружу. Зимой в ночное время пространство между внешней и внутренней оболочками фасада герметизируется, образуя статичную воздушную прослойку, обладающую хорошими теплоизоляционными свойствами.

Снижению затрат энергии на отопление способствуют и зимние сады, обеспечивающие дополнительные теплопоступления за счет аккумулирования тепла солнечной радиации. Снижение затрат энергии на охлаждение здания достигается путем использования герметичных двойных стеклопакетов, заполненных инертным газом и отражающих инфракрасное излучение. Такие стеклопакеты используются в зимних садах, а также в ненесущих стенах по периметру офисных помещений. При этом солнцезащитные устройства устанавливаются между стеклопакетом и внешней светопрозрачной оболочкой здания. При поступлении в здание солнечной радиации происходит ее первоначальное ослабление посредством внешней светопрозрачной оболочки.

Дальнейшее резкое уменьшение солнечной радиации осуществляется при помощи солнцезащитных устройств. Аэродинамика и система естественной вентиляции здания. Высотное здание разделяется по вертикали на четыре 12-этажных модуля, называемыми «деревнями». Каждый модуль имеет три 4-этажных зимних сада, соединенных вертикально посредством центрального атриума. Сады и атриум связаны для повышения эффективности естественной вентиляции (рис. 6). Каждый модуль контролируется собственной независимой установкой климатизации. Через каждые 12 этажей на границах модулей атриум разделен горизонтально для выравнивания давления и защиты от распространения дыма. Сады, атриум и офисные помещения по периметру имеют открываемые окна. Вентиляция офисов в первую очередь осуществляется естественным образом, но в здании также имеются установки механической вентиляции и охлаждаемые перекрытия с замоноличенными трубопроводами.

Рисунок 10. Расчетные значения наружных и внутренних температур в летний и переходный периоды при естественной вентиляции.

При разработке проекта вентиляции использовались методы компьютерного моделирования и аэродинамические исследования. Компания RPI (Roger Preston International) провела подробный климатический анализ, выполнила моделирование теплового режима здания и оценку комфортности микроклимата здания. Влияние ветрового напора на здание и воздушные потоки в атриуме исследовались в аэродинамической трубе (рис. 7), а результаты исследований использовались в ходе дальнейшего компьютерного моделирования.

Рисунок 11. Естественная вентиляция здания в летний период (источник - официальный сайт студии «Foster and Partners»).

Примерно в течение 2/3 всего года сотрудники банка могут регулировать уровень естественной вентиляции самостоятельно путем индивидуального открытия окон. Только при сложных погодных условиях система автоматического управления оборудованием климатизации задействует систему механической вентиляции. Благодаря такой схеме организации вентиляции энергопотребление в высотном здании «Commerzbank» на 30% ниже, чем в традиционных высотных зданиях таких же размеров. Естественная вентиляция здания «Commerzbank» осуществляется под действием гравитационных сил и под действием ветрового напора. Выбор ориентации здания от относительно преобладающего направления ветра позволил обеспечить достаточную естественную вентиляцию. Вентиляция внутренних зон здания может осуществляться при помощи механической системы, обеспечивающей минимальную кратность воздухообмена для обеспечения комфортных параметров микроклимата. Регулирование температуры помещений осуществляется отопительными установками, расположенными по периметру здания, и охлаждаемыми перекрытиями с замоноличенными трубопроводами. Внутренний (выходящий в атриум) фасад оборудован наклонно-поворотными окнами со встроенными выходными демпферами (маленькими поворотными окнами) и имеет одинарное остекление. Наружный двойной фасад состоит из одинарного и многослойного остекления, обеспечивающего солнцезащиту. Наружный воздух попадает в верхнюю часть каждого помещения сквозь вентилируемые полости в фасаде и выходит через жалюзи рядом с поворотными окнами.

При прямом солнечном облучении и безветренных днях (приблизительно 3% всех дней года) естественная вентиляция, возникающая в результате гравитационного напора, может быть четко измерена, поскольку температура увеличивается на каждом этаже на 1,5–3°С (при прямом солнечном излучении) или на 1°С на каждом этаже при днях с переменной облачностью.

Естественная вентиляция, возникающая под действием гравитационного напора, может быть неэффективна при переменной облачности только в том случае, если наружная температура значительно превышает температуру помещений. На рис. 8 показаны воздушные потоки, возникающие под действием ветрового напора. Из рисунка следует, что только треть здания обращена к наветренной стороне, а две трети здания - к подветренной стороне. Аэродинамические исследования, проведенные при средней скорости ветра во Франкфурте-на-Майне (приблизительно равной 4 м/с), а также для известных геометрических размеров здания, показали, что воздушные потоки, возникающие под действием ветрового напора, будут способствовать естественной вентиляции здания в течение всего года при открытии соответствующих элементов окон.

В зимний период (рис. 9) естественная вентиляция всех офисных помещений, расположенных по периметру здания, обеспечивает комфортные параметры микроклимата в помещениях, однако здесь необходимо обратить внимание на то, что механическая вентиляция позволяет обеспечивать комфортные параметры микроклимата при одновременной экономии энергии за счет утилизации тепла удаляемого воздуха. Естественная вентиляция внутренних (смежных с зимним садом) офисных помещений эффективнее, чем вентиляция офисов, расположенных по периметру здания, поскольку внутренние офисные помещения расположены рядом с зимними садами. Зимние сады действуют как термальные буферные зоны, в которых прямая или рассеянная солнечная радиация помогает обогревать все помещение. В переходный период, когда наружная температура колеблется в пределах от 5 до 15°C, механическая вентиляция не является необходимой из-за приемлемой температуры наружного воздуха.

Открытие окон наклонно-поворотного типа имеет смысл, когда сила ветра умеренная. Такое открытие окон создает кратность воздухообмена в помещении 4–6 1/ч. При высокой скорости ветра и температуре ниже 15°C окна необходимо держать закрытыми и следует использовать механическую систему вентиляции и дополнительный обогрев, а также, при необходимости, и увлажнение. Каждый находящийся в комнате может включить механическую вентиляцию и систему обогрева, а также открыть на определенное время окна для поступления свежего воздуха, вернувшись, таким образом, к системе естественной вентиляции.

На рис. 10 приведены расчетные значения наружных и внутренних температур в летний и переходный периоды при естественной вентиляции. Анализ температурных данных показывает, что в летнее время при безветренной погоде необходимо осуществлять дополнительную вентиляцию и охлаждение здания, поскольку в противном случае температура в комнатах будет превышать комфортную. В этот период времени окна зимних садов полностью открываются, забирая теплый наружный воздух при температурах около 32°C. В зимних садах наружный воздух охлаждается приблизительно на 0,5–1°C. Охлажденный естественным образом воздух движется через атриум и затем перемещается к следующему зимнему саду, где выходит из здания (рис. 11). В ночное время в преддверии жаркого летнего дня теплоемкие части здания охлаждаются посредством прохладного наружного воздуха, в то время как охлаждаемые перекрытия с замоноличенными трубопроводами поглощают и высвобождают тепловую энергию. Оборудование приблизительно 50% площадей помещений охлаждаемыми перекрытиями обеспечивает достаточную теплоемкость для создания прохладных температур в помещениях на следующий день в диапазоне от 21°C (8:00 утра) до 28,5°C (18:00 вечера) без использования воздушного кондиционирования. Здание «Commerzbank» дополнительно оборудовано системами механической вентиляции для обеспечения требуемых параметров микроклимата.

Уровень механической вентиляции и охлаждения может быть задан любым присутствующим в здании. В результате наблюдений, проводимых в данном здании в течение года, было установлено, что частота использования естественной вентиляции в дневное время достигла 70% (рис. 12). Только в 9% времени года наружная дневная температура повышалась настолько, что действительно было необходимо применять воздушное кондиционирование. В 21% времени года целесообразно дополнительно использовать механическую вентиляцию для экономии энергии посредством утилизации тепла удаляемого воздуха. Тем не менее, естественная вентиляция возможна и в данный период. Исследования различных способов ночного охлаждения здания дали следующее процентное распределение, построенное по совокупному объему часов эксплуатации (рис. 13):

  • использование механической вентиляции и дополнительно охлажденного воздуха - около 15%;
  • использование механической вентиляции и наружного воздуха - 12%;
  • охлаждение путем естественной вентиляции - около 73%.

На рис. 14 представлено сравнение энергопотребления для зданий с естественной системой вентиляции и для аналогичного по объему здания с традиционной системой кондиционирования воздуха. Система климатизации здания Система климатизации здания включает в себя систему механической вентиляции с утилизацией тепла удаляемого воздуха, охлаждаемые теплоемкие перекрытия с замоноличенными трубопроводами, конвекторы для обогрева помещений офисов (рис. 15) и обогреваемые металлические конструкции светопроемов ограждений атриума (рис. 16).

Охлаждаемые теплоемкие перекрытия с замоноличенными трубопроводами используются для естественного охлаждения здания вместо традиционной системы кондиционирования с присущими ей недостатками. Обогрев помещений осуществляется стандартными конвекторами. Сотрудники банка имеют возможность индивидуально контролировать температуру в офисе внутри определенного диапазона. Все функции здания направлены на удовлетворение потребностей сотрудников и в то же время предполагают высокую эффективность использования энергии. Это достигается при управлении инженерным оборудованием «интеллектуальной» системой, которая обеспечивает оптимальный режим работы систем вентиляции, отопления и охлаждения, а также позволяет сотрудникам индивидуально регулировать параметры микроклимата непосредственно в рабочей зоне (рис. 17). Использование естественного освещения. Команда разработчиков проекта придала большое значение максимально возможному использованию дневного света. Использование естественного освещения значительно снижает эксплуатационные затраты и, кроме этого, улучшает психологический комфорт находящихся в здании людей. Каждое офисное помещение в здании «Commerzbank» расположено в соответствии с требованиями Германского строительного стандарта, который требует, чтобы все сотрудники размещались не далее чем 7,5 м от окон. Прозрачность здания и стеклянные перегородки между офисными помещениями и коридорами позволяют достичь высокого уровня освещенности дневным светом на всех рабочих местах. На каждом уровне одна из треугольных секций здания является открытой и составляет часть зимнего сада. Такая конструкция позволяет каждому офису либо иметь вид на город, либо иметь вид на атриум и сад (рис. 18).

Рисунок 18. Каждый сотрудник офиса имеет вид на зеленый участок. В данном случае это вид через атриум на один из садов

Каждый сотрудник офиса имеет вид на зеленый участок. В данном случае это вид через атриум на один из садов. Зимние сады позволяют свету проникать к внутренним стенам каждого крыла. Эти сады обеспечивают «природный вид» для сотрудников офисов и вместе с атриумом участвуют в организации естественной системы вентиляции для всего здания. Особенности конструкции Здание представляет собой равносторонний треугольник со скругленными углами шириной 60 м. Его форму составляют три секции, сочлененные с центральным атриумом.

Немецкие строители предложили конструкторское решение, предполагавшее использование железобетона в качестве основного конструкционного материала. Железобетонная конструкция дешевле на несколько миллионов долларов по сравнению со стальной, однако такое решение привело бы к необходимости размещения колонн внутри зимних садов и за счет этого к ухудшению естественной освещенности всего здания. Здание «Commerzbank» стало первым в Германии высотным зданием, в котором сталь использовалась в качестве основного конструкционного материала (рис. 19).

Применение стали вместо железобетона в конструкции высотного здания потребовало специальных противопожарных мероприятий, осуществленных немецкой компанией «BPK Brandschutz Planung Klingsch GmbH». В числе прочих мероприятий - применение спринклерной системы, обеспечивающей подачу воды даже при отключении энергии. Конструктивно эта система выполнена в виде емкостей, в которых помимо воды закачен под давлением газ. В случае пожара емкость разгерметизируется и вода под давлением разбрызгивается без дополнительного побуждения.

Для ограничения усадки существующего старого 30-этажного здания «Commerzbank», расположенного в нескольких метрах, строители производили забивку свай и заливку монолитного фундаментного основания для каждого угла в отдельности. Забивка свай производилась на 40 м до незатронутой подстилающей коренной породы (здания во Франкфурте обычно имеют фундамент на глубине 30-метрового глинистого пласта). Сплошной фундамент был создан на глубине 7,5 м, его толщина составляет 2,5–4,5 м. 111 свай диаметром 1,5–1,8 м и длиной до 48,5 м собраны по группам под каждой из колонн высотного здания (рис. 20).

Наружное освещение

Молодой немецкий дизайнер Томас Эмде (Thomas Emde), чьим средством выражения является свет и цвет, добавил окончательные штрихи к зданию, спроектированному Норманом Фостером. Схема наружного освещения, предложенная Томасом Эмде, была выбрана по итогам конкурса. Проект этой схемы наружного освещения был разработан в студии «Blendwork», в которой работали четыре профессионала: дизайнер Томас Эмде, менеджер проектов и историк-искусствовед Питер Фишер (Peter Fischer), дизайнер светового оформления Гюнтер Хекер (Gunther Hecker) и менеджер по световому дизайну Ральф Тьювен (Ralf Teuwen). Благодаря световому оформлению от Томаса Эмде особые черты первого в мире экологичного высотного здания видны ночью так же отчетливо, как и днем. При взгляде издали девять 4-этажных зимних садов, опоясывающих здание по спирали, создают впечатление прозрачности здания. Именно такую прозрачность и хотел подчеркнуть Томас Эмде при разработке схемы наружного освещения. Для этого он разместил источники рассеянного света в садах, что позволяет им ночью светиться теплым желтым светом. Он также подсветил верхние фасады здания, чтобы подчеркнуть вертикальность здания. В результате панорама ночного Франкфурта сильно изменилась. В студии «Blendwork» также было создано «Цветовое Руно» («The Color Fleece») - огромная картина в вестибюле здания. При размерах в 210 м² данное произведение является одним из самых больших в мире. То, что видит наблюдатель, зависит от его местоположения, времени суток и уровня естественной освещенности. В монографии, описывающей процесс создания данного произведения, Эмде написал о здании «Commerzbank»: «В отличие от других высотных зданий (во Франкфурте) здание Нормана Фостера создает новое двойное движение. С одной стороны, здание практически уходит в бесконечную высоту, заметно поднимаясь ввысь от земли и отрываясь от нее. В то же время само здание несет ввысь и девять садов». «Здание поднимает вместе с собой целые деревья, отрывая растения от земли, со своим пониманием близости к природе и корней в почве. Это отражает двойственность здания, поскольку оно, как и деревья, которые всегда стремятся расти ввысь, ближе к свету, тоже стремиться ввысь». «В данном случае здание „Commerzbank“ изменяет простой закон прикрепленности к земле. Природа - моделированное жизненное пространство, находящееся в движении в высоте, отражающее двойственность здания. Здание отрицает необходимость нахождения растений на земле посредством поднятия их на высоту и их приближения к свету».

Что такое энергоэффективность зданий? Это показатель того, как эффективно жилой дом пользуется любыми видами энергии в ходе эксплуатации – электрической, тепловой, ГВС, вентиляции, и т.д. Чтобы обозначить класс энергоэффективности, следует сравнить практические или расчетные параметры среднегодового расходования энергоресурсов (система отопления и вентиляционная система, горячее и холодное снабжение водой, расходы электроэнергии), и нормативные параметры этого же среднегодового значения. При выявлении энергоэффективности зданий и сооружения, а также других строительных объектов необходимо учитывать климат в регионе, уровень оборудования жилья инженерными коммуникациями и график их работы, принимать во внимание тип строительного объекта, свойства стройматериалов и множество других параметров.

Классификация

Потребление электроэнергии контролируется домовыми учетными приборами (счетчиками), и корректируется в соответствии с нормативными требованиями. Корректировка расчета включает в себя показатели реальных погодных условий, количество проживающих в доме, и другие факторы. Такой подход к контролю расхода энергии заставляет жильцов активнее пользоваться приборами учета и контроля любых видов энергии для получения более точных данных о расходе базовых видов энергии. Кроме того, в многоквартирных домах устанавливаются общедомовые приборы учета и контроля, дополнительно помогающие определить класс энергетической эффективности здания.

Определение классов энергосбережения общественных строений и зданий жилого фонда происходит согласно СП 50.13330.2012 (старое обозначение – СНиП 23-02-2003). Классификацию оценки энергосбережения и энергоэффективности отражает таблица ниже – в ней учитываются процентные отклонения все расчетные и фактические характеристики расхода всех требуемых видов бытовой энергии от нормативных значений:

Класс Обозначение Погрешность расчетных параметров по расходу на отопительную и вентиляционную системы строения в % от нормативного Рекомендации
При разработке проекта в вводе в эксплуатацию новых и отремонтированных объектов
А ++ Очень высокий класс ≤ -60 Финансирование мероприятий
А + -50/-60
А -40/-50
В + Высокий класс -30/-40 Финансирование мероприятий
В -15/-30
С + Нормальный класс -5/-15
С +5/-5 Без финансового стимулирования
С – +15/+5
При эксплуатации строения
D Средний класс +15,1/+50 Переоборудование на основе экономического обоснования
Е Низкий класс ≥ +50
F Низкий класс ≥ +60 Переоборудование на основе экономического обоснования или снос объекта
G Самый низкий класс ≥ +80 Снос объекта

Среднегодовой расход энергоресурсов

Основные показатели удельного среднегодового энергорасхода представлены в таблице выше в качестве примера, и имеют два основополагающих показателя: этажность и значения отопительного сезона в градусо-сутках. Это стандартное отражение расхода на отопление и затрат на вентиляцию, ГВС и расходы электроэнергии в общественных местах. Затраты на вентилирование и отопление должны определяться для каждого объекта по регионам. Если сравнить определяющие значения затрат энергоресурсов в нормативных параметрах, с базовыми показателями, то легко узнать и позволяет определить классы энергетической эффективности зданий, которые обозначаются на латинице символами от А ++ до G. Такое разделение по классам происходит в соответствии с правилами, разработанными по евростандартам EN 15217. Этот свод правил имеет собственную градацию по классам энергоэффективности.

По вопросам энергопотребления при электрическом отоплении дома и эксплуатации мультисплит-систем соответствующая нормативная документация и свод нормирующих правил еще не отрегулирован окончательно, поэтому при определении энергоэффективности жилого или производственного здания с такими характеристиками могут возникнуть определенные сложности. Все расходы электроэнергии, проходящие в обход общедомовых счетчиков, считаются индивидуальными затратами, но как их правильно перераспределять и учитывать, до конца не определено. Такие затраты энергии не учитываются при необходимости выяснить классы энергоэффективности здания с преобладающим электропотреблением.

Классы энергоэффективности новых и эксплуатирующихся строительных объектов

Новые многоэтажные и многоквартирные дома, а также отдельные их помещения, получают свой класс энергоэффективности в обязательном порядке, а уже работающим объектам классы энергоэффективности здания присваиваются по желанию владельца недвижимости, согласно федерального закона № 261 ФЗ РФ. При этом Минстрой РФ может рекомендовать региональным инспекциям определять класс после фиксации всех показаний счетчиков, но это могут делать и органы местного управления по собственной инициативе и по ускоренной методике.

Новый строительный объект отличается от уже эксплуатирующегося по энергопотреблению тем, что некоторое время происходит усадка здания, усушка бетона, дом может быть заселен не полностью, и поэтому текущее потребление энергии следует периодически подтверждать показаниями счетчиков, а точнее – в течение пяти лет согласно приказу № 261. В течение этого времени сохраняется гарантийная ответственность строительной компании на срок гарантии для объекта. Но подтвердить существующий класс энергетической эффективности здания необходимо до окончания гарантии застройщика. При обнаружении в течение этого срока отклонений от проекта собственники жилья могут потребовать от гаранта исправить ошибки и недоделки.

Функционал объекта Внутренняя темпера­тура отопительного се­зон a 0 jw , °С Внутренняя темпера­тура летнего сезона Площадь на одного жителя А 0 , м 2 /чел Тепло, выделяемое людьми д 0 , Вт/ч Тепловыделения вну­тренних источников g v , Вт/м 2 Среднее за месяц суточное пребывание в помещении t, ч Годовое потребление электроэнергии у Е, кВт ч/(м 2 год) Часть здания, где потребляется электро­энергия, Расход наружного воздуха на вентиля­цию v c , м 3 /(ч м 2) Годовой расход энергии на горячее водоснабжение % w , кВт ч/(м 2 год)
Одно- и двухквартирные жилые дома 20 24 60 70 1,2 12 20 0,7 0,7 10
Многоквартирные жилые дома 20 24 40 70 1,8 12 30 0,7 0,7 20
Административные здания 20 24 20 80 4 6 20 0,9 0,7 10
Учебные здания 20 24 10 70 7 4 10 0,9 0,7 10
Лечебные здания 22 24 30 80 2,7 16 30 0,7 1 30
Здания общественного питания 20 24 5 100 20 3 30 0,7 1,2 60
Торговые здания 20 24 10 90 9 4 30 0,8 0,7 10
Здания спортивного назначения, исключая бассейны 18 24 20 100 5 6 10 0,9 0,7 80
Бассейны 28 28 20 60 3 4 60 0,7 0,7 80
Здания культуры 20 24 5 80 16 3 20 0,8 1 10
Промышленные здания и гаражи 18 24 20 100 5 6 20 0,9 0,7 10
Складские здания 18 24 100 100 1 6 6 0,9 0,3 1,4
Гостиницы 20 24 40 70 1,8 12 30 0,7 0,7 20
Здания бытового обслуживания 20 24 20 80 4 6 20 0,9 0,7 10
Здания транспортного назначения 20 24 20 80 4 6 20 0,9 0,7 10
Здания отдыха 18 24 20 100 5 6 10 0,9 0,7 80
Здания специального назначения 20 24 40 70 1,8 12 30 0,7 0,7 20

В законопроекте № 261 ФЗ РФ обозначено, что при высоком классе энергетической эффективности здания (классы «В», «А», «А +», «А ++») время стабильности параметров энергопотребления должно составлять не менее 10 лет.

Как присваивается класс энергоэффективности

Для только что построенного здания класс энергоэффективности должен определять Госстройнадзор согласно поданной декларации о расходах энергоресурсов. После подачи декларации вместе с другой, установленной нормативами, документацией, Госстройнадзор присваивает зданию соответствующий класс и выдает об этом выдает заключение с присваиванием класса энергетической эффективности. Правильность заполнения декларации также контролируется Госстройнадзором. Строительные объекты, подлежащие классификации – это промышленные и жилые объекты.

Определение присвоения класса упрощается, если здание уже какое-то время эксплуатируется: собственник жилья или управляющая компания подают заявку в Госжилинспекцию, а также доносят декларацию, в которой должны быть указаны показания счетчиков за текущий год. Это делается для возможности контроля правильности показаний приборов учета.

Так как на данный момент происходит пересмотр стандартов с целью перехода на европейские нормы, то классы энергоэффективности, присвоенные объектам ранее, буду пересмотрены, и им будет присвоен класс согласно модели евростандарта EN 15217. Для примера: Там нормальный класс энергетической эффективности здания согласно EN 15217 – D, нормальный уровень энергоэффективности – среднее арифметическое для половины жилого фонда строений.

Указатели класса и энергосберегающие технологии

На фасадах многоквартирных домов должны быть закреплены таблички с указанием класса энергетической эффективности здания. Кроме того, согласно закона № 261 ФЗ, в подъезде жилого дома должна на специальном стенде присутствовать дополнительная информация о классификации и ее показателях.

Также информация на табличке, кроме символов класса, должна содержать значение удельного расхода энергии на один квадратный метр площади, прописанное крупным, легко читаемым шрифтом. Рядом с этими цифрами должны быть указаны нормативные показатели этих значений.

Одно из пожеланий Минэнерго России – внести в Приказ некоторые требования по энергоэффективности, помимо показателей и методик. Здесь существуют разные подходы: некоторые эксперты с этим не согласны.

В дальнейшем Минэнерго предусматривает новые регламенты по использованию в жилищном и промышленном строительстве некоторых эффективных и дешевых энергосберегающих технологий. Эти регламенты будут обязывать к присвоению наивысшего класса зданию, построенному с применением таких технологий.

На сегодня представляющими интерес являются две технологии, которые могут соответствовать наивысшему классу: освещение здания пир помощи светодиодных светильников, и оборудование индивидуальных тепловых пунктов (ИТП) с автоматическим погодным и даже пофасадным регулированием. Эти технологии снижают энергопотребление дома в десятки раз, одновременно обеспечивая комфортное проживание. Северные и южные фасады дома должны работать в разных тепловых режимах, что можно реализовать при помощи ИТП.

Энергоэффективный дом – это здание, в котором очень малое потребление энергии сочетается с комфортным микроклиматом.

Экономия энергии в таких домах достигает 90%.

Годовая потребность в отоплении энергоэффективного дома может составлять менее 15 кВт*ч на квадратный метр.
Например, на сегодняшний день в самой распространенной конструкции частного дома (ж/б фундамент, система «теплый пол» без утепления, стены 1,5 кирпича с цементной штукатуркой, обычными металлопластиковыми окнами, утеплением кровли 150мм и без приточно-вытяжной вентиляции с рекуперацией тепла) потребление энергии на отопление составляет 110-130 кВт*ч на 1 м2 в год.

В странах Евросоюза принята такая классификация домов:

  1. Дома низкого энергопотребления
    Используют как минимум на 50 % энергии меньше, чем стандартные здания, построенные в соответствии с действующими нормами энергопотребления.
  2. Дома ультранизкого энергопотребления
    Расходуют на 70-90 % энергии меньше, чем обычные здания. Примеры домов ультранизкого энергопотребления с четко обозначенными требованиями – это немецкий Passive House, французский Effinergie, швейцарский Minergie.
    Пионером в строительстве таких домов стал Passive House (пассивный дом), который был разработан в Германии в г.Дармштадт в 90-х годах. Принято считать здание «пассивным», если оно соответствует требованиям, разработанным немецким институтом пассивных зданий. «Пассивный» дом – это дом с отличной теплоизоляцией, минимальным потреблением электроэнергии и тепловой энергии. В нем поддерживается комфортный микроклимат в основном за счет человеческого тепла, энергии солнца и бытовых электроприборов, таких как чайник, плита и т.д. Технологии «пассивного» дома (здания с ультранизким потреблением энергии, без традиционной системы отопления), эффективны и уже опробованы в суровом скандинавском климате. Такие дома практически не имеют тепловых потерь.
  3. Дома, генерирующие энергию
    Это здания, которые производят электричество для собственных нужд. В некоторых случаях излишки энергии летом могут быть проданы энергетической компании и куплены обратно в зимнее время. Хорошая теплоизоляция, инновационный дизайн и использование возобновляемых источников энергии (солнечные батареи, грунтовые тепловые насосы) делают эти дома авангардом современного домостроения.
  4. Дома с нулевыми выбросами CO2
    Термин, чаще всего используемый в Великобритании. Такой дом не выделяет CO2. Это означает, что дом сам обеспечивает себя энергией из возобновляемых источников, включая энергию, расходуемую на отопление/охлаждение помещений, горячее водоснабжение, вентиляцию, освещение, приготовление пищи и электрические приборы. В Великобритании все новые дома с 2016 года строятся в соответствии с этим стандартом. В России принята следующая классификация:


*В соответствие со СНиП 23-02-2003 "Тепловая защита зданий" нормативы для
Ростова-на-Дону (м2° С/Вт) Rстен=2,63 Rпокр=3,96 Rокон=0,84

КАК «НАУЧИТЬ» ДОМ БЫТЬ ЭКОНОМНЫМ И КОМФОРТНЫМ?

1. Правильное ориентирование дома относительно сторон света.


Одним из наиболее важных факторов, влияющих на потребление домом энергетических ресурсов, является его расположение относительно сторон света. Большая часть окон дома должна быть направлена на юг. При этом отклонение до 30° от азимута на юг незначительно уменьшает использование энергии солнца. Если дом расположить по-другому, то стены и крышу здания следует утеплить более эффективно, чтобы компенсировать недостаток тепла, попадающего в помещение с лучами солнечного света.

Как происходит нагрев дома от солнца? Порядка 90% световой энергии проникает через стёкла окон, нагревая помещение. Современные стеклопакеты изготавливают со специальными покрытиями и заполнением инертным газом. Покрытия отражают длинноволновые инфракрасные лучи из помещения обратно внутрь помещений, уменьшая их потерю через окна.

Из-за больших окон летом в доме может стать слишком жарко. Эта проблема решается применением еще одного специального покрытия стекол, а также использованием автоматических систем затемнения, свесов крыш, балконов. Их располагают так, чтобы позволить проходить прямым солнечным лучам через окна только при низком положении солнца в зимнее время. Летом окна на солнечной стороне дома затеняют деревья. Зимой же солнечный свет легко проникает в дом между голыми ветвями.

2. Проектирование компактной конфигурации строений.

Чем больше наружная поверхность здания при одинаковом объёме его помещений, тем выше потери тепла. Поэтому при строительстве, реконструкции или расширении дома, следует по возможности избегать всевозможных ниш, уступов, выступов на стенах. Имеет смысл возводить необогреваемые пристройки на северной стороне дома. Например, помещения для хранения садового инвентаря и велосипедов, технические помещения, защищающие отапливаемую часть дома от ветра и холода. Дом компактной конструкции не только потребляет меньше энергии, но и требует меньших затрат на строительство.

3. Наружные стены, конструкции и свойства применяемых строительных материалов.

Значительная часть тепла уходит из дома через его наружную оболочку. Чем выше перепад между температурами в помещениях и вне дома, тем больше потери тепла.


Степень теплоизоляции дома определяется коэффициентами сопротивления теплопередаче его ограждающих конструкций (пол, стены, окна, кровля). Чем он выше, тем качество утепления лучше.

На рисунке выше представлены конструкции стен коэффициент сопротивления передачи которых составляет 2,1- 2,2 м2ºС/Вт, что удовлетворяет региональным требованиям зданий находящихся в географической широте г.Краснодара.

В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», для г. Ростов-на-Дону, сопротивление теплопередаче одноэтажного дома должно быть не менее 2,62 м2ºС/Вт.

4. Толщина наружных стен и жилая площадь дома.

От толщины наружных стен непосредственно зависит величина будущей жилой площади в доме. Если стены сделать толщиной, например, не 32 см, а 38,5 см, жилая площадь дома значительно уменьшится. Так, в доме площадью 10x11 м в условиях стен указанной толщины его жилая площадь потеряет 2,73 м! На каждом этаже. А это значит, что каждый квадратный метр жилья обойдётся дороже! При толщине же стен в 49 см жилая площадь каждого этажа уменьшится почти на 8 м2.

5. Шумозащита дома.

Звукоизоляция стен и конструкций дома напрямую зависит от плотности и структуры материала, из которого они изготовлены. При проектировании дома, очень важно уделять внимание изоляции от ударных и звуковых шумов.

Сплошные (без окон и дверей) стены, например из фибропенобетона толщиной 250мм, в полной мере отвечают требованиям комфорта. Звукоизоляция же стены с окнами, занимающими более 25% площади, будет уже не столь эффективной: в этом случае значительная порция шума будет проникать через окна. Именно здесь, прежде всего, потребуются специальные меры по шумоизоляции.

6. Индивидуальное восприятие комфорта и климат в помещении.

Понятие «комфорт в доме» у многих имеет неодинаковый смысл. Одни считают, что самый комфортный - это дом из обожжённого глиняного кирпича, другие предпочитают силикатный кирпич, третьи питают пристрастие к деревянной каркасной конструкции. Однако климат в доме зависит не только от абсорбционной и теплоаккумулирующей способности стен, принципа работы системы отопления, системы вентилирования и деятельности его обитателей. Комфортный микроклимат – это сбалансированное сочетание всех этих элементов в конструкции дома.

7. Теплопотери и мостики холода.

При утеплении дома особое внимание необходимо местам потерь тепла, или так называемым «мостам холода». В этих местах тепло уходит наружу более интенсивно, чем в других. Примером могут служить балконы, исполненные вместе с перекрытием в виде одной сплошной плиты, оконные откосы или стыки между наружными стенами и подвальным перекрытием. Чтобы уменьшить потери тепла и избежать возможных повреждений конструкций (например, образования на них плесени из-за отпотевания), необходимо учесть это ещё в стадии проектирования и строительства дома.
Уплотнению стыков в местах монтажа окон, дверей, кровли и креплению корпусов ролльставен следует обратить особое внимание.


В условиях любой стропильной конструкции, в т.ч. деревянной, над утеплителем необходимо настелить гидроизоляционную паропроницаемую пленку, а снизу под утеплитель пароизоляционную плёнку и уложить бесшовную теплоизоляцию. Особого внимания требует заделка примыканий к внутренним стенам. На этих двух фото один и тот же дом: первая фотография сделана фотоаппаратом, вторая - тепловизором.
Этот прибор зафиксировал огромные теплопотери через окна и наружные стены (отмечены желтым и красным цветами).

8. Теплоизоляция крыши.

Если раньше считалось, что для теплоизоляции крыши вполне достаточно утеплителя (минерально-волокнистых матов или пенополиуретановых плит) толщиной 10 см, то теперь в отношении утепления крыши действуют значительно более жёсткие нормы. Для крыш энергоэффективных («тёплых») домов сопротивление теплопередаче должно быть не менее не менее 6 м2ºС/Вт, т.е. толщина теплоизоляции из материала с коэффициентом теплопроводности (при равновесной влажности) 0,04 Вт/м2К должна быть не менее 24 см.

В условиях более жёстких норм потребления энергоресурсов, важную роль в их экономии играют системы отопления домов, отвечающие новым требованиям. Существенной экономии энергии можно достичь, например, за счёт применения автоматически регулируемых малоинерционных систем, быстро реагирующих на изменение температуры в помещениях.

Так при прогревании помещений солнечными лучами, проходящими сквозь окна, соответствующие датчики могут подавать на дозирующие клапаны сигнал, на уменьшение подачи теплоносителя в приборы отопления данной комнаты. Соответственно котел будет работать меньшее количество времени и расход газа сократится. В этом случае добрую услугу при отоплении дома Вам могут оказать пластинчатые отопительные батареи и конвекторы, которые обладают малой инерционностью. Отопление посредством нагрева полов и кафельная печь из-за большой нагреваемой массы быстро реагировать не смогут.

Отопительный котёл должен соответствовать стандартам, говорящим об эффективном использовании энергии и отсутствии выбросов вредных веществ в атмосферу. Ныне этим требованиям отвечают конденсационные котлы, работающие на жидком топливе или газе, а также газовые паровые котлы со сверхвысоким КПД.

Однако наиболее эффективной и обеспечивающей наибольший комфорт, является система отопления инфракрасными пленочными обогревателями, их КПД 92-97%.

При желании уменьшить энергопотребление собственного дома встает вопрос: что нужно сделать в первую очередь - сделать более мощной систему отопления или утеплить дом? Ответ на этот вопрос однозначный. Сначала следует улучшить теплоизоляцию всех элементов дома. Поскольку для обогрева хорошо утеплённого дома потребуется более компактная и менее мощная система отопления, но хорошо отрегулированная.

10. Пассивное и активное использование солнечной энергии.

Экономить энергоресурсы позволяет применение в окнах стеклопакетов с меньшим коэффициентом теплопередачи. Например, 1,6 Вт/(м2-К) вместо прежних 2,3 или 2,6 Вт/(м2-К). Современный рынок предлагает стеклопакеты даже с Кт =1,3-1,1 Вт/(м2-К) . Бывают стеклопакеты и люкс-класса (0,9-0,8 Вт/(м2"К)), но они стоят значительно дороже. Наряду с экономией энергии, стеклопакеты создают в помещениях комфорт. На стоимость окна, прежде всего, влияет материал рамы и только потом - остекление. Применение стеклопакета с коэффициентом теплопередачи 1,3 или даже 1,11 Вт/м2-К не ведёт к резкому повышению стоимости окна в отличие, например, от использования деревянных рам из склеенной ангарской сосны.

Преобразование солнечной энергии.

Энергию солнца можно использовать не только пассивно (за счёт преимущественного расположения остеклённых поверхностей дома на южную сторону), но и активно. В этом случае речь идёт об использовании солнечных батарей и солнечных водонагревателей, с помощью которых можно подогревать воду для ванной, душа и системы отопления.

  1. Жидкостный солнечный коллектор;
  2. Щит автоматики;
  3. Теплообменник;
  4. Разбор подогретой воды;
  5. Змеевик контура отопительного котла;
  6. Змеевик-теплообменник солнечной станции;
  7. Трубопровод подпитки теплообменника;
  8. Трубопровод подпитки солнечного коллектора.

При проектировании дома необходимо предусмотреть прокладку теплоизолированных труб от солнечного к потребителям горячей воды. Процесс преобразования солнечной энергии в электрическую через фотоэлектрические элементы, сегодня уже достаточно совершенен, но пока для частного домостроения экономически оправдано только использование солнечных водонагревателей.

Наряду с потерями тепла через конструктивные элементы здания, оно теряется и при вентилировании помещений.

Проверено, что в условиях хорошо утеплённого дома вентиляционные потери тепла достигают 30-50%. При этом тепло теряется в результате замены тёплого воздуха на свежий, но более холодный.

Этот процесс совершенно необходим для создания нормальных микроклиматических условий в доме. Потребность в вентиляции особенно заметна в энергоэффективном доме, где пути проникновения в дом холодного свежего воздуха надёжно перекрыты уплотнениями.

Эффективным решением в борьбе с теплопотерями, является монтаж системы вентиляции с рекуперацией (возвратом) тепла, которое у современных моделей достигает 80-85%.

На этапе проектирования нужно обязательно предусмотреть место расположения рекуператора и трубопроводов.

Однако эффективная система вентиляции, исходя из практики, является самым распространенным элементом строительства, на котором всегда экономят. Поскольку потребность жильцов дома в чистом свежем воздухе не уменьшается, им приходится постоянно оплачивать перерасход электроэнергии или газа, который уходит на компенсацию выветриваемого тепла.

Задумайтесь: какой смысл дополнительно уплотнять и утеплять конструкции помещений, если тепло уходит наружу через открытые окна и двери?

Без установки эффективной системы вентиляции с этими теплопотерями остается смириться. Их можно только немного сократить, на 25-30% (или на 10-15% от общего объема потерь тепла) за счет правильного проветривания. Вне отопительного сезона, естественно, вентилировать дом можно сколько угодно. Проводить так называемое сквозняковое вентилирование, рекомендуется хотя бы в порядке соблюдения гигиенических норм. Полезно не менее двух-трёх раз в день на короткое время настежь открывать окна, создавая сквозняк.

Время, необходимое для воздухообмена, зависит от температуры и влажности наружного воздуха и силы ветра. Чем холоднее и суше на улице, тем короче должен быть процесс проветривания. Водяной пар, а также запахи, образующиеся при принятии ванны или душа, следует сразу же удалять проветриванием помещения. В зимнее время это нужно делать осторожно, так как сквозняк может не только нанести вред здоровью обитателей дома, но и повлечь за собой потерю значительного количества тепла. Известно, человек не лишён слабостей, к которым можно отнести и непреднамеренное пренебрежительное отношение к соблюдению правил. В данном случае - это правила проветривания помещений. Зачастую, когда жарко, мы не уменьшаем мощность системы отопления, а открываем форточку. Так не поручить ли это дело вентиляционной технике, управляемой компьютером в автономном режиме?

Телевизоры, стиральные машины, электрочайники, утюги, варочные панели, сплит-системы, лампочки - все они потребляют значительное количество электроэнергии. Сегодня сократить ее расход достаточно просто. Нужно при покупке каждого электроприбора обращать на его класс энергопотребления, он должен быть ААА.

Для освещения дома лучше всего использовать лампы на основе LED технологии. Светодиодная лампа является одним из самых экологически чистых источников света. Принцип свечения светодиодов позволяет использовать в производстве и работе самой лампы безопасные компоненты. Они не содержат токсичных веществ, поэтому не представляют опасности в случае выхода из строя или разрушения. Срок службы светодиодной лампы составляет до 100 000 часов. А повышенная энергоемкость позволяет потреблять в 10 раз меньше электроэнергии по сравнению с традиционными лампами накаливания.

13. Экономный расход воды и возврат теплоты от использованной теплой воды.

Производители сантехнического оборудования за последнее десятилетие разработали много различных конструкций смесителей, кранов и других элементов сантехнического оборудования, которые позволяют сократить расход воды на 40-50%, без потери моющих свойств потока воды.

Разработаны инновационные системы полива цветников и газонов частных домов, которые сокращают расход воды на полив 40-60%. Системы объединяют в себе локальные датчики, региональные прогнозы погоды и интеллектуальный алгоритм для выбора оптимального режима полива растений на приусадебном участке. Датчики вставляются в каждую зону полива и отслеживают влажность, температуру почвы и освещенность территории. В систему встроен микроконтроллер, который подсоединяет датчики по беспроводной технологии Wi-Fi к домашней сети для контроля времени и продолжительности полива. А микроконтроллер, анализируя все полученные данные, сам выбирает оптимальный режим полива.

В 2012г. конструкторы систем рекуперации частных домов из Англии и Бельгии представили очень компактные системы, которые позволяют возвращать тепловую энергию от сточных вод обратно в дом. КПД таких систем около 60%.

СТОИТ ЛИ ВСЕ ЭТО ТОГО, ЧТОБЫ НЕСТИ ДОПОЛНИТЕЛЬНЫЕ РАСХОДЫ ПРИ СТРОИТЕЛЬСТВЕ?

Ответ на этот вопрос могут дать реальные цифры экономии и подтвержденные факты.

  1. Стоимость самого популярного в России источника тепловой энергии –природного газа в 2017г. в Ростове-на-Дону составляла 5,5 руб./м3. Тенденция цены – ежегодный плавный рост до уровня общемировых цен, как это уже произошло с бензином, стоимость которого на внутреннем рынке сравнялась с его стоимостью на рынках Европы и Северной Америки. Сегодня средняя цена 1м3 природного газа, например в Европе, составляет 0,37 $/м3, т.е. 13,3 руб./м3. Если предположить, что ежегодное повышение цены составит всего 9%, то цена газа на внутреннем рынке достигнет уровня среднемировой к 2025г.
  2. Среднемесячный объем энергопотребления газа в зимний период обычным домом 100м2 (ж/б фундамент, система «теплый пол» без утепления, стены 1,5 кирпича с цементной штукатуркой, с обычными металлопластиковыми окнами, утеплением кровли 150мм и без приточно-вытяжной вентиляции с рекуперацией тепла), составляет 850-900м3. В ценах 2017г. это 4,8т.р./месяц, но в 2025г. с очень высокой степень вероятности, отопление этого дома будет в среднем стоить 11,5т.р./месяц, или около 60000 руб. за отопительный период.
  3. Собственники домов вышеописанной конструкции, имеющие столь огромные расходы на отопление, будут вынуждены делать их утепление, минимальная стоимость которого в ценах 2017г., для 1эт. дома 100м2 (чтобы привести в соответствие со СНиП 2302-2003 «Тепловая защита зданий») составляет около 320 тыс.руб. Если они не будут заниматься теплоизоляцией, то им придется смириться с тем, что суммы оплаты за потребленные энергоресурсы будут огромны, их дома будут оценены рынком значительно ниже, чем те, которые построены в соответствии со стандартами энергосбережения. Покупатели домов проверяют это просто, они поросят квитанции об оплате коммунальных платежей за прошлый год.

Самые актуальные вопросы:

На сколько увеличится стоимость строительства, если все делать сразу в соответствии с существующими нормативами по теплосбережению?

В среднем от 3% до 10%, все зависит от архитектурного проекта, изначально правильно выбранных инженерных решений по конструкции дома, строительных материалов и технологий.

Через сколько лет эти дополнительные вложения в сохранение тепла окупятся?

Например: при строительстве 1эт. дома 100м2 (по классической вышеописанной схеме), первоначальная стоимость возведения составила 2100 тыс. руб. После корректировки, с целью уложиться в требования СНиП 2302-2003 «Тепловая защита зданий», смета увеличилась на 90 тыс.руб. При этом энергопотребление снизится не менее, чем на 30% (обычно 35-40%), а ежегодная экономия за отопительный период составит не менее 1400м3 природного газа. В 2017г. цена 1м3 газа в Ростове-на-Дону составляла 5,5руб. При условии ежегодного подорожания газа не более, чем на 9%, затраты окупятся на 8-й год. Однако гораздо важнее то, что спустя эти 8 лет все равно придется проводить комплекс мероприятий по энергосбережению дома, чтобы его содержание не стало тяжелым финансовым бременем для семьи. А стоимость переделки элементов дома будет почти в 4 раза дороже, по сравнению 80 тыс.руб. затрат на энергосбережение на этапе строительства.


Есть реальные примеры построенных Вами домов, у которых на 30-40% меньше расход газа на отопление, без ущерба для комфорта проживания?

Более 70% наших Клиентов приняли решение о строительстве таких домов, и уже живут в них. Однако, с 2014г. мы начали предлагать заказчикам и реализовывать в проектах комплексные инженерные решения по всем конструкциям элементов дома, которые позволяют сократить расход энергоресурсов во время эксплуатации еще на 20-30%.

Энергетическая стратегия энергосбережения в зданиях должна строиться на формировании и реализации стимулов экономного использования природных ресурсов. Главным мотивом энергосбережения должно быть сохранение окружающей естественной среды и даже ее улучшение, а также защита интересов будущих поколений в сохранении традиционных природных источников энергии, но уже как сырья для химической и медицинской промышленности.

Строительство современных многоэтажных и многофункциональных зданий является молодой отраслью. Такой же молодой как и ультрапрогрессивные отрасли второй половины ХХ века - самолетостроение и вычислительная техника. Однако строительство за последние годы по сравнению с ними претерпело не столь значительные изменения.

Изучение и решение проблем энергосбережения, возникшие при строительстве современных зданий, стали мощным импульсом к изучению проблем микроклимата и климатизации здания. Этим и объясняется имеющая место широкая номенклатура зданий на основе различных концепций энергетически эффективных и экологически чистых технологий.

В основе концепций проектирования современных зданий лежит идея того, что качество окружающей нас среды оказывает непосредственное влияние на качество нашей жизни как дома, так и на рабочем месте или в местах общего пользования, составляющих основу наших городов.

Концепции имеют собственное наименование. Наиболее известные из них:

  • энергоэффективное здание(energy efficient building);
  • пассивное здание (passive building);
  • умное здание (smart building);
  • здоровое здание (healthy building);
  • интеллектуальное здание (intelligent building);
  • здание с низким энергопотреблением (low energy building);
  • здание с ультранизким энергопотреблением (ultralow energy building);
  • здание высоких технологий (high-tech building);
  • биоклиматическая архитектура (bioclimatic architecture);
  • экологическинейтральное здание;
  • sustainable building(сохранение окружающей среды);
  • advanced building(перевод с англ. -усовершенствованное здание).

Современное здание, с точки зрения эффективности, характеризуется потребительскими системами показателей. Одна из главных потребительских систем показателей здания - система показателей энергетической эффективности здания.

Современный технически образованный человек выберет систему энергоэффективности жилья, при оценке его как будущий владелец, если на первый план им выдвигается необходимость экономии энергии.

Энергоэффективное здание - это здание, в котором экономия энергоресурсов достигается за счет применения инновационных решений, технически осуществимых, экономически обоснованных, приемлемых с экологической и социальной точек зрения и не изменяющих привычный образ жизни.

Энергоэффективные дома, по сути, становятся европейским стандартом . Наибольшим практическим опытом реализации проектов энергоэффективных пассивных домов обладают:

  • страны Западной Европы, и в первую очередь, Германия;
  • Швеция: 2-х этажные жилые солнечные дома из дерева в г. Карльстаде (59° с.ш.), расположены так, чтобы не было взаимного затенения;

  • в Хельсинки,Финляндия, построен энергоэффективный жилой район;
  • в Лондоне,Великобритания, успешно реализован проект энергоэффективного общественного здания мэрии;

    в американской практике в "холодных" районах, давно уже строятся суперизолированные дома с тройным остеклением северных фасадов и усиленной теплоизоляцией наружных поверхностей;

    в Канаде, накоплен опыт строительства суперизолированных домов с малым потреблением энергии на отопление, построены солнечные дома в провинции Квебек, в провинции Саскачеван, климатические условия которой характеризуются зимней расчетной температурой -34,5°С;

  • в России условиях Юго-Западной Сибири с 1981года построены солнечные дома по 3-м вариантам.

Сегодня, для строительства в России энергоэффективных и экологически чистых зданий, по мнению специалистов, есть два стимулирующих обстоятельства :

  1. При конкурентной борьбе на рынке жилых и общественных зданий всё больше главную роль играют показатели потребительских качеств здания, определяющими из которых являются: обеспечение качества микроклимата и энергоэффективность здания;
  2. Инвесторы приходят к выводу о целесообразности сдачи площадей в аренду, а не о целесообразности их продажи, из-за растущей инфляции и изменений стоимости на жилье и общественные помещения, поэтому они заинтересованы во внедрении энергосберегающих технологий при строительстве зданий и в создании собственных управляющих компаний по эксплуатации этих зданий.

В России вполне реализуемы многие составляющие концепции энергоэффективного дома. Так, при реконструкции жилого фонда, успешно применяются технологии первоочередных мероприятий по повышению энергоэффективности зданий, таких как:

  • утепление фасадов с использованием современных теплоизоляционных материалов;
  • установка современных высокоэффективных оконных систем с применением схем принудительной вентиляции.

Начальное вложение в практическое внедрение энергосберегающих технологий стоит недешево, но большие капитальные затраты можно считать долгосрочной и весьма надежной инвестицией , т.к. они окупаются за счет дальнейших низких эксплуатационных расходов. Расходы на эксплуатацию, после внедрения энергосберегающих технологий, снижаются на 25-30%. К сожалению, эта невысокая разница служит аргументом для тех, кто необоснованно занижает сумму первоначальных вложений в энергоффективность здания при строительстве и реконструкции. С другой стороны, чересчур высокие начальные инвестиции не смогут окупиться за всё время эксплуатации здания.

В последнее время, в связи с обострением проблем экономии энергоресурсов и защиты окружающей среды, резко возрос интерес к использованию нетрадиционных видов энергии , таких как солнечная энергия, ветровая энергия и др. Возобновляемые источники энергии: солнце, ветер и др., с давних пор используются человеком. Солнечная энергия, применяемая в концепциях проектирования современного здания - пассивный дом и солнечный дом , оказывает существенное влияние на снижение потребления энергии от традиционных источников - нагревательных и охладительных устройств.

Отличительными чертами пассивного здания являются:

  • компактность и хорошая изоляция наружных ограждающих частей здания, в 2-3 раза превышающая нормативные показатели сопротивления теплопередаче;
  • пассивное использование солнечной энергии, с обязательным остеклением южной части здания и учетом особенностей затенения;
  • энергоэффективное остекление с сопротивлением теплопередачи оконных конструкций не менее 0,8 м.°С/Вт;
  • воздухонепроницаемость, с допустимой утечкой воздуха через неуплотненные соединения не выше 0.6 объема помещения в час;
  • пассивное предварительное нагревание свежего воздуха, поступающего в дом по подземным трубам, предварительно нагреваясь от соприкосновения с почвой почти до 5°C, даже в холодные зимние дни;
  • высокоэффективный воздухообмен: более 80%;
  • подача горячей воды с использованием регенеративных источников энергии: например, солнечных коллекторов;
  • применение термической массы из теплоаккумулирующих материалов для сохранения тепла в холодные ночи и для поддержания прохлады в жаркие дни.

Теплоаккумулирующая среда, применяемая в термической массе пассивного дома, представлена тремя основными видами: камни, вода и эвтектические соли (с фазовым превращением). Особенность теплоаккумулирующих материалов в том, что они обладают высокой тепловой инерцией.

Тепловая инерция - это способность материалов или среды поглощать тепло и сохранять его по мере нагрева. Если окружающая температура понижается, то накопленное тепло поступает в окружающую среду, а сами материалы или среда охлаждаются. Но для охлаждения или нагрева до изменившейся температуры окружающего воздуха требуется некоторое время.

Солнечная энергия, попав внутрь дома, может передаваться на поверхность термической теплоаккумулирующей массы, от других, освещенных солнцем поверхностей, за счет отражения и теплового излучения. Стремитесь располагать тепловую массу во всех освещаемых солнцем поверхностях. При поглощении теплоаккумулирующими материалами солнечной энергии, происходит повышение температуры на поверхности материалов. Энергия, поглощенная поверхностью, передается внутрь материала путем теплопроводности.

Поглощательная способность поверхности теплоаккумулирующих материалов различна и зависит от :

Термическая масса , на которую падает прямое солнечное излучение, должна иметь значительную площадь без чрезмерной толщины, поэтому тонкие теплоаккумулирующие плиты эффективнее толстых. Наиболее эффективная толщина для бетонной теплоаккумулирующей плиты - 100 мм, увеличение толщины более 150 мм является бессмысленным. Наиболее эффективная толщина для древесины - 25 мм.

Полы в пассивном доме должны иметь темную окраску, т.к. темный цвет, поглощает солнечное излучение, а не отражает его, и делает сам пол более теплым и легко поддающимся чистке.

Термическая масса стен и потолков должна быть светлой, т.к. темная стена, быстро нагреваясь, создаст направленный вверх термосифонный воздушный поток, приводящий к перегреву помещения.

Наиболее эффективными аккумулирующими контейнерами являются составляющие здание стены, перекрытия, крыши, внутренние перегородки, а также мебель. К источникам энергии в жилом доме можно отнести кухонную плиту, работающие бытовые электроприборы, лампы освещения, людей и животных, т.е. все те поверхности тел, которые имеют температуру выше или ниже температуры воздуха и излучают энергию в виде волн различной длины. Например, спокойно сидящий человек имеет тепловую мощность 120 ватт. Суммарно эти тепловыделения достигают немалых величин, сравнимых с мощностью систем отопления.

Термическая масса(необходимой толщины и площади), поглощая тепло в жаркое время суток, охлаждает помещение, а при понижении температуры воздуха и поступлении этого воздуха в здание, либо за счет естественной циркуляции через проемы, например вентиляционные отверстия или окна, либо принудительно при помощи вентиляторов, термическая масса, медленно охлаждаясь, путем конвективного теплообмена, нагревает воздух в помещении. За тот период времени, пока термическая масса, обладающая инерцией, снова нагреется до температуры окружающего воздуха, необходимости в кондиционировании воздуха в помещении не будет.

Проблема энергоэффективности жилья сегодня актуальна как никогда. Дело не только в повышении цен на энергоресурсы, неизбежно вызывающем рост цен на коммунальные услуги . Все большую тревогу вызывает значительное ухудшение экологической ситуации, климатические изменения, связанные с парниковым эффектом. Первыми о том, каким должен быть энергоэффективный дом , серьезно начали задумываться на Западе в конце прошлого века. Прежде всего специалистов из Австрии, Германии, Швеции интересовала экономия затрат на электроэнергию и обогрев. Тщательно проанализировав проблему, они обнаружили, что на общую энергоэффективность дома влияют не только очевидные факторы вроде изоляционной или отопительной системы . Имеет значение даже то, что никогда не принималось в расчет: ориентация здания относительно сторон света, форма строения и пр.

Были разработаны новые строительные стандарты, появилась современная классификация зданий в соответствии с уровнем затрачиваемой на их функционирование энергии. Введение понятия «пассивного » здания можно считать кардинальной сменой ориентиров строительной сферы.

На что расходуется электроэнергия ? В основном, на отопление жилой площади. Кроме того, немало ресурсов отнимает освещение, работа бытовых приборов, подогрев воды для бытовых нужд, приготовление еды. Если страны Европы тратят на отопление помещений в среднем 57% общего объема энергии, то в России этот показатель достигает 72%.
Выход очевиден. Строительство энергоэффективных зданий обходится немного дороже (процентов на пятнадцать), но оправдывает себя уже через несколько месяцев с начала эксплуатации, так как реально позволяет экономить и деньги, и ресурсы. Эффективность эксплуатации повышается не только за счет изменения строительных стандартов, но и за счет пересмотра принципов потребления бытовой электроэнергии: использование LCD-телевизоров, светодиодных светильников и пр.

Типы зданий с точки зрения энергоэффективности

Здание, построенное в соответствии с современными стандартами энергоэффективности, позволяет сэкономить от 40 до 70 процентов оплаты услуг коммунальщиков. Экономится колоссальное количество энергии и ресурсов. При этом общие показатели температуры, благоприятного микроклимата, влажности воздуха оказываются на порядок выше общепринятых и регулируются собственником помещения.

Западная классификация зданий с точки зрения энергоэффективности включает следующие нормы расхода тепла:

  • старое здание (300 кВт·ч/м³ в год) – постройки до 70-х годов прошлого века;
  • новое здание (150 кВт·ч/м³ в год) – от 70-го до 2002 г.;
  • дом с низким потреблением энергии (60 кВт·ч/м³ в год) – с 2002 г.;
  • пассивный дом (15 кВт·ч/м³ в год);
  • дом с нулевым потреблением энергии;
  • дом, самостоятельно вырабатывающий энергию в больших количествах, чем нужно для его функционирования.

Российская классификация зданий отличается от западной:

  • старое здание (600 кВт·ч/м³ в год);
  • современный дом, построенный по стандарту СНиП 23-02-2003 «Тепловая защита зданий» (350, ч/мі в год).

Понятно, что суровый климат России требует больших затрат на отопление жилых помещений. Однако общепринятые нормы не всегда стоит признавать удовлетворительными. Необходимо использовать новые технологии, конструктивные решения, современные материалы при строительстве жилья с более низким электропотреблением. Возможности для этого есть.

Концепция пассивного дома

Идею пассивного дома можно назвать самой прогрессивной на сегодняшний день. Суть в том, чтобы из объекта, требующего колоссальных затрат на функционирование, создать дом, не зависящий от внешних ресурсов, способный вырабатывать энергию самостоятельно и быть полностью экологичным. На сегодняшний день идея реализована частично.
Обеспечение энергией пассивного дома происходит за счет возобновляемых природных энергоресурсов: солнечного света, энергии ветра и земли. В качестве источника энергии используется также естественное тепло, выделяемое проживающими в доме людьми и работающими бытовыми приборами. Потери тепла минимизируются за счет конструкции здания, более эффективной теплоизоляции, использования энергосберегающих технологий, создания эффективной инновационной системы вентиляции.

Интересно, что с 2015 года строительство пассивных домов должно стать стандартом для Евросоюза. Экстремально низкое потребление электроэнергии достигается за счет тщательной изоляции наружных дверей, оконных проемов, стыков стен, полного отсутствия «мостиков холода» (участков стен, через которые теряется половина тепловой энергии), использования естественно вырабатываемого людьми, приборами, системой вентиляции тепла.

энергоэффективный дом - принципы строительства

Главная цель возведения энергоэффективного дома – сделать расход электроэнергии минимальным, особенно в период зимних холодов. Основными принципами строительства будут следующие:

  • наращивание 15-сентиметрового теплоизоляционного слоя;
  • простая форма кровли и периметра здания;
  • использование теплых, экологичных материалов;
  • создание механической, а не естественной (или гравитационной) системы вентиляции;
  • использование природной возобновляемой энергии;
  • ориентация дома в южном направлении;
  • полное исключение «мостиков холода»;
  • абсолютная герметичность.

Большинство российских типовых застроек имеет естественную (или гравитационную) вентиляцию , которая крайне неэффективна и приводит к значительной теплопотере . Летом такая система вообще не работает, да и зимой для притока свежего воздуха нужно постоянно проветривание. Установка рекуператора воздуха позволит использовать для обогрева притекающего воздуха уже нагретый и наоборот. Рекуперационная система способна обеспечить от 60 до 90 процентов тепла за счет нагрева воздуха, то есть позволяет отказаться от водяных радиаторов, котлов, труб.

Не стоит строить дом большей площади, чем это нужно для реального проживания. Обогрев лишних неиспользуемых помещений недопустим. Дом должен быть рассчитан ровно на то количество людей, которое будет постоянно проживать в нем. Остальные помещения обогреваются в том числе за счет естественно выделяемого человеком тепла, работы компьютеров, бытовых приборов и пр.

Энергоэффективный дом должен быть построен с учетом максимального использования климатических условий. Большое количество солнечных дней в году или постоянные ветра должны стать подсказкой для выбора энергии. Важно обеспечить герметичность не только за счет уплотнения окон и дверей, но и за счет использования для стен и крыши двусторонней штукатурки, ветро-, тепло- и пароизоляции. Следует учитывать, что большая площадь остекления приведет к неизбежным теплопотерям.

Учет энергоэффективности дома при проектировании

Выбирая место для строительства, нужно учитывать природный ландшафт. Местность должна быть ровной, без резких перепадов высоты – фундамент дома от этого только выиграет в плане надежности и герметичности. Однако любую особенность ландшафта можно использовать для повышения эксплуатационной эффективности. Например, перепад высот обеспечит низкозатратную систему подачи воды.

Обязательно стоит учесть расположение дома относительно солнца, чтобы использовать по максимуму естественное солнечное освещение вместо электрического. На рисунке показана возможность использования солнечного тепла в зависимости от времени года.

Все это не только снизит расходы на содержание, но и повысит срок службы здания.

«Подводные камни» использования современных материалов

В современном строительстве активно используются разные виды утеплителей. Они призваны максимально утеплить фундамент, стены и крышу строения, снизив тем самым энергопотери. Самым популярными современными материалами являются: пенопласт (пенополистирол), ЭППС (экструдированный пенополистирол), минераловатные утеплители (стекловата, базальтовая или каменная вата), пенополиуретан, пеностекло, эковата, вермикулит, перлит.

Нужно понимать, что популярные экономварианты вроде пенопласта, газобетонных или пенобетонных плит могут стать тем самым подводным камнем, о который можно разбить саму идею энергоэффективности. Дело в том, что газо- и пенобетонные плиты часто изготавливаются с грубым нарушением технологии. Такой «утеплитель» не сделает дом надежным и прочным.

Пенопласт вообще относится к классу опасных материалов. Он очень горюч и начинает выделять вредные ядовитые вещества уже при температуре 60 градусов. Чаще всего человек во время пожара задыхается, получает смертельную дозу токсических веществ. Кроме того пенополистирол выделает токсичные вещества и пир комнатной температуре. Наконец, он просто недолговечен: срок жизни пенопласта 40 лет, тогда как срок эксплуатации дома в среднем составляет 75 лет.

Как повысить энергоэффективность уже построенного дома

Повысить энергоэффективность уже построенного дома реально. Однако следует учитывать «возраст» здания. Если капитальное переобустройство позволит строению протянуть еще лет двадцать, игра стоит свеч: вложения окупятся. Если через пять-десять лет здание пойдет под снос, кардинально менять его просто нет смысла.

Снизить энегопотери помогут современные материалы и технологии. Начать нужно с определения мест утечек тепла. «Мостики холода» отнимают у здания половину накопленного тепла. Именно поэтому так важно обнаружить и ликвидировать места нарушения герметичности стен, крыши, оконных и дверных проемов.

Чаще всего погрешности встречаются в месте выноса наружу балкона, цоколя, прочих внешних конструкций. Обязательно следует утеплить чердак, перекрытия над подвальным помещением (лучше использовать теплоизоляционные плиты), межкомнатные двери. Жители многоквартирных домов получат заметный эффект, установив двери в тамбурной зоне.
Не только субъективно ощущаемый холод может свидетельствовать о нарушенной герметизации. Появление плесени, грибка на стенах– явный показатель разгерметизации. Старые или неправильно установленные окна способны лишить помещение львиной доли тепла. Иногда одна только их замена на стеклопакеты хорошего качества, установленные по ГОСТу, способны в 2-3 раза снизить расходы на отопление.

Утепляющий материал должен быть экологичным и безопасным. Отличный вариант – использование теплой штукатурки для дополнительной герметизации и утепления стен. Этот материал прекрасно справляется с разгерметизированными швами и стыками, а также видимыми трещинами. В качестве утеплителя допустимо использовать полиэтилен, помещая его под деревянную обшивку. Толщина материала должны быть не менее 200 микрон.

Как повысить эффективность отопительной и вентиляционной систем

Важнейшей частью проекта по повышению энергоэффективности дома может стать модернизация отопительной системы. Хороший эффект можно получить, заменив чугунные батареи на алюминиевые с датчиком регулирования температуры. При этом следует точно рассчитать нужное количество секций, необходимых для обогрева конкретного помещения.

Можно установить за радиаторами отопления теплоотражающие экраны, а также контроллеры отпуска тепла. По возможности стоит установить дополнительные элементы нагрева воды при помощи солнечного коллектора.

Отличным вариантом снижения энергозатрат станет замена естественной вентиляции на механическую с рекуперацией. О преимуществах этой системы уже говорилось. Она способна подогревать поступающий воздух за счет выводимого из системы воздуха.

Дополнительно можно установить контроллеры управления вентиляцией, специальные проветриватели, тепловые насосы для охлаждения воздуха.

Меры экономии воды, электричества и газа

Счетчики воды и газа уже стали, наряду с привычными электросчетчиками, непременным атрибутом каждого дома или квартиры. Дополнительно можно установить общедомовые счетчики, стабилизаторы давления по этажам.

В квартирах рекомендуется устанавливать двухрежимные смывные бачки, двухсекционные раковины, клавишные краны, смесители с авторегулировкой температуры воды.
В подъездах лучше всего устанавливать люминесцентное энергосберегающее освещение. Для улицы лучше использовать светодиодные лампы . Фотоакустические установки реле должны управлять освещением подвальных и технических помещений, жилых подъездов. Для освещения зданий можно применять солнечные батареи.

Бытовые приборы энергосберегающего класса А+ и выше (телевизоры, посудомоечные машины, духовки, кондиционеры, стиральные машины) значительно экономят электроэнергию.

Способствуют экономии газа системы климат-контроля в квартирах и котельных. Отличный вариант – программируемое отопление, использование специальных энергоэффективных кухонных плит, а также газовых горелок в эконом-режиме.

Очевидно, что для достижения энергоэффективности недостаточно одного-двух решений, даже если речь идет о строительстве дома «с нуля». Комфорт, экономия, безопасность окружающей среды достижимы при условии комплексного подхода к решению проблемы. И частный дом , и многоквартирный нуждаются в создании серьезного проекта, охватывающего все аспекты энергоэффективности.

По экспертным оценкам, реально достижимо снижение издержек на энергообеспечение уже построенного дома в четыре раза, пропорционально понизив затраты жильцов.
Министерством строительства РФ приняты новые нормы потребления энергоресурсов: 150 кВт/ч на квадратный метр площади. Закон о повышении энергоэффективности зданий принят в работу. К 2020 году российские квартиры будут терять на 40% тепла меньше, чем сегодня.

12 мар. 2013 г. 14:00

Одной из современных тенденций жилищного строительства является разработка и конструирование зданий, в которых комфорт планировочных решений сочетался бы с экологичностью и энергоэффективностью.

По различным экспертным оценкам запасов основных источников энергии (нефти, газа и угля) в мире осталось максимум на 100 лет. Практически половина потребления энергии в развитых странах приходится на жилые дома. Поэтому одним из основных методов ресурсосбережения становится улучшение энергоэффективности зданий. Инновационным направлением в строительстве, пока мало распространенным в России, является создание т.н. энергоэффективных домов.

Основной принцип проектирования энергоэффективного дома - поддержание комфортной внутренней температуры без применения систем отопления и вентиляции за счет максимальной герметизации здания и использования альтернативных источников энергии.

Критерием для классификации таких домов является энергопотребление: если затраты на отопление помещений в год составляют менее 90 кВч/м2 - дом считается энергоэффективным; менее 45 кВч/м2 - энергопассивным; менее 15 кВт ч/м2 - нулевого энергопотребления (на отопление ничего не тратится, но требуется энергия для подготовки горячей воды) .

Первое экспериментальное энергоэффективное здание появилось после мирового энергетического кризиса 1974 года в Манчестере (США). Это было офисное здание, запроектированное по заказу Администрации общих служб для апробации и выявления лучших технических решений по энергосбережению. Энергопотребление здания сокращалось за счет эффективного использования солнечной радиации, двухслойных ограждающих конструкций и компьютерного управления инженерным оборудованием здания.

Реализация этого проекта положила начало строительству энергосберегающих зданий по всему миру. Работы по повышению энергоэффективности успешно ведутся в Европе. По данным различных источников, в западноевропейских странах уже построено от 2 до 10 тысяч таких домов. Лидерами этого движения являются Дания, Германия и Финляндия, где приняты целевые государственные программы по энергосбережению и строительству энергосберегающих зданий.

В столице Финляндии, Хельсинки, существует целый энергоэффективный район - VIIKKI, построенный в 10 километрах от центра города (население этого микрорайона составляет 5 500 жителей, площадь 1132 га). В микрорайоне VIIKKI использование солнечной энергии обеспечивает до 50% потребности в отоплении и горячей воде . Общая площадь солнечных коллекторов составляет 1248 м2. Технологии энергосбережения и использование альтернативной энергии обеспечивают до 40 % снижения энергопотребления по сравнению с традиционными домами. Энергопотребление в домах не превышает 15 кВт/ч на 1 м2 .

В Дании в настоящее время муниципалитет города Egedal в соответствии с госпрограммой строит целый поселок энергосберегающих домов Stenlose South. Вместо разговоров об экологии и энергосбережении гражданам просто предоставляют готовые дома, оснащенные всеми энергоэффективными новинками.

Для максимального снижения затрат энергии используются следующие планировочные, конструктивные и инженерно-технические решения.

С планировочной точки зрения это 1-3-этажные дома, объемная структура которых проектируется максимально компактной с возможно меньшей изрезанностью фасада, что уменьшает площадь наружных ограждений и снижает тем самым теплопотери через них. Обязательным условием является наличие входного тамбура. Ориентация дома - широтная, окнами на юг, т.к. основным источником тепла для обогрева дома является солнечная энергия. Затененность дома деревьями и другими строениями исключается.

Ограждающие конструкции в домах низкого энергопотребления во избежание потерь тепла сооружают максимально герметичными, тепло- и воздухонепроницаемыми, без «мостиков холода». Сопротивление теплопередаче ограждений не должно быть более 0,15 Вт/м2К. Для этого применяется внутренняя или двойная (внутренняя и внешняя) теплоизоляция. С точки зрения материалов это чаще всего комбинированные сооружения: подвальный этаж из монолитного железобетона и наземная часть, представляющая собой деревянный каркас с многослойными наружными стенами и перекрытиями. В европейских домах широко используются теплоизоляционные материалы с акцентом на экологичность, в том числе и натуральные материалы - мох, целлюлоза, овечья шерсть, деревянная стружка и т. д. . Окна в таких домах - с трехкамерными стеклопакетами, заполненными инертным газом и специальным низкоэмиссионным покрытием стекол, «оставляющим» внутри помещения более 50 % солнечной энергии, падающей на стекло. Сопротивление теплопередаче окон не должно превышать 0,8 Вт/м2К.

Инженерные системы и сети следующие. Вентиляция в домах - принудительная и осуществляется по принципу рекуперации, т.е. как минимум 70 - 75 % тепла, уходящего из дома с выходящим теплым воздухом передается с помощью теплообменника холодному приточному воздуху. Для отопления и горячего водоснабжения дома используется источники тепла и энергии самого дома (внутренние тепловыделения), а также геотермальное тепло и солнечная энергия (с помощью гелиосистем). Дополнительная экономия тепловой энергии происходит за счёт использования автоматизированной системы управления всеми техническими устройствами в здании.

Выполнение всех этих требований позволяет снижать потребность в энергии на отопление дома в климатических условиях Европы до 15 кВт ч/м2 в год. Для сравнения у кирпичного дома в Европе этот показатель составляет 250-350 кВтч/м2, в России - 400-600 кВтч/м2 .

Стоимость 1 м2 в таких домах в среднем на 8 -15% больше средних показателей обычного здания, но по подсчетам специалистов за счет экономии энергии на отопление затраты окупаются за 7 -10 лет.

Как известно, климат западной Европы намного мягче российского и поэтому особый интерес представляет канадский опыт. Примером может служить канадская фирма «Concept Construction», построившая 20 энергоэффективных домов в провинции Саскачеван, климатические условия которой характеризуются зимней расчетной температурой -34,5 °С и Q = 6100 градусо-суток отопительного периода. К применяемым в Европе инженерно-техническим решениям канадские инженеры добавляют свои «изюминки».

Пример планировки жилого дома этой фирмы показан на рис. 1. В северной стене устраивается только одно окно для освещения кухни. Минимальное количество окон запроектировано также в западной и восточной стенах. Предусмотрен входной тамбур. Южная стена полностью остеклена. При этом, только треть остекленной поверхности используется для естественного освещения и инсоляции общей жилой комнаты. В остальной части стены за остеклением размещена железобетонная стеновая панель (стена Тромба) толщиной 25 см с окрашенной в черный цвет наружной поверхностью . Зазор между этой панелью и внутренним стеклом, равный 5 см, образует своего рода высокую и тонкую солнечную теплицу. Солнечная радиация, проходя через остекление, поглощается черной поверхностью бетонной стены и нагревает ее.

В промежутке между стеклами (шириной 15 см) двойного остекления по всей длине фасада автоматически опускаются на ночь теплоизоляционные апюминированные нейлоновые шторы. Они приводятся в действие электродвигателем, управляемым термочувствительными элементами. Это позволяет значительно сократить теплопотери здания в холодное время суток. Летом эти шторы могут использоваться для защиты помещений от перегрева, т.к. их опускают в дневное время и поднимают вечером. Размещение шторы именно между слоями остекления предохраняет внутреннее стекло от переохлаждения и возможного оледенения. Важным моментом является герметизация наружных ограждающих конструкций полиэтиленовой пленкой. Она препятствует инфильтрации наружного воздуха, и в качестве пароизоляции предохраняет теплоизоляционный слой от конденсационного увлажнения изнутри. Циркуляция воздуха в жилых помещениях дома естественная. Для кухни и ванной комнаты применяют вентилятор в системе вентиляционных каналов . Применение напольных электрообогревателей вместо обычных печей также дает экономию. Итоговое увеличение стоимости типового дома площадью 98 м2 с малым потреблением энергии, происходящее за счет повышения стоимости южной стены, дополнительной теплоизоляции и использования воздушного теплообменника, по расчетам фирмы-производителя составляет 3...5 % .

Основным недостатком энергоэффективных и энергопассивных домов является проблема с качеством воздуха в герметичных непроветриваемых помещениях. Это проблема возникает из-за большого количества используемых ненатуральных строительных материалов: утеплителей, отделочных материалов, пластиков, синтетических смол и т.п., которые в процессе эксплуатации выделяют в воздух помещения вещества, неблагоприятно влияющие на человека.

Непременным условием возведения таких домов является наличие высококвалифицированных проектировщиков и рабочих. Это связано с необходимостью тщательного соблюдения технологии строительства. Например, даже небольшая неплотность пароизоляции при устройстве утеплителя внутри здания, или незаизолированная бетонная перемычка, или швы с большим количеством раствора могут свести на нет все усилия по герметизации дома, а исправление брака может стоить очень дорого.

В России проектирование и строительство энергоэффективных домов находится в стадии эксперимента. Первым опытом энергоэффективного строительства можно назвать экспериментальный жилой дом, построенный в 2001 году в московском микрорайоне Никулино-2. При его возведении впервые в нашей стране был использован комплекс мероприятий, обеспечивающих снижение энергозатрат при эксплуатации жилья. В здании были установлены теплона- сосы для горячего водоснабжения, использующие тепло грунта и удаляемого вентиляционного воздуха, система отопления, обеспечивающая возможность поквартирного учета и регулирования потребляемого тепла, и применены наружные ограждающие конструкции с повышенной теплозащитой.

По данным ГК «Фонд содействия реформированию ЖКХ», на сегодняшний день в российских регионах ведется проектирование и строительство 29 энергоэффективных домов, построены и введены в эксплуатацию 19 домов (Белгород, Уфа, Казань, Ангарск и др.). В декабре 2010 года в Барнауле был введен в эксплуатацию первый за Уралом 19-квартирный энергоэффективный жилой дом. Для снижения теплопотерь через стены здания применена одна из наиболее современных технологий - система утепления фасадов «мокрого типа» «Классик» (г. Самара). «Система полностью укутывает отапливаемое здание, исключает мостики холода, своевременно удаляет возможную влагу, делает невозможным образования плесени и грибка, создаётся оптимальный баланс температуры и влажности», отметил генеральный проектировщик, директор «Бар наулгражданпроект» Андрей Отмашкин. Меридиональная ориентация здания позволит увеличить теплопоступления в дом от солнечной радиации. В доме действуют солнечные коллекторы, дающие энергию для освещения и горячего водоснабжения, функционирует система рекуперации воздуха. Создано также тепловое поле для обеспечения горячего водоснабжения и отопления. В целом экономия энергии должна составить 52 %. При этом стоимость 1 м2 составила 44 тыс. руб., что примерно в 1,5 раза дороже типовых аналогов.

В секторе малоэтажного строительства дочерней компанией RDI Group - «Загородный проект» совместно с «Velux» в Подмосковье на территории проекта «Западная долина» осуществлен пилотный проект «Активный дом». Оборудован он всеми новинками энергосберегающих технологий. Стоимость двухэтажного коттеджа площадью около 200 м2 составила около 40 млн. руб. Затраты на отопление и горячее водоснабжение «Активного дома», по предварительным расчетам составят 12 566 руб. в год. Затраты обычного дома, отапливаемого за счет газа, - 24 000 руб. в год, за счет электричества - 217 000 в год. Рядом с «Активным домом» продаются обычные коттеджи сравнимой площади - 220 м2 по 12 млн. руб. .

Понятно, что при массовом строительстве таких домов стоимость квадратного метра будет снижаться. На российском рынке уже представлены строительные материалы и инженерные системы для возведения таких зданий. Необходим переход к их типовой постройке. Понимание этой проблемы на государственном уровне привело к созданию федерального закона от 23.11.2009 № 261 -ФЗ «Об энергосбережении и повышении энергетической эффективности...», в соответствии с которым с 2012 года повсеместно будут внедряться паспорта энергоэффективности промышленных и жилых зданий.

Истощение невозобновляемых энергетических ресурсов заставляет задуматься о более сознательном их использова нии, и создание энергоэффективных домов - один из шагов на этом пути.

ЛИТЕРАТУРА

  1. Широков Е.И. Экодом нулевого энергопотребления - реальный шаг к устойчивому развитию / Е.И. Широков// Архитектура и строительство России. - 2009. - № 2. - С.35-39.
  2. Зайцев И. Пассивный дом - мечта или повседневность?/ И.Зайцев/Яехнологии строительства. - 2008. - № 4. - С. 36-39.
  3. Кузнецов А. Проектирование энергосберегающих зданий/А.Кузнецов// Проектные и изыскательские работы в строительстве. - 2010. - №1. - С. 15-20
  4. Иванова Н. Энергоэффективные дом / Н.Иванова // Загородное обозрение. - 2011. - №11. - С. 10-12.
  5. Построй Свой Дом. Энергосберегающие загородные дома . http://www.mensh.ru/solnechnye_doma_v_kanade
  6. http://www.fondgkh.ru/news/44215 htm/
  7. Эффективность энергоэффективного дома в России (видео). Информационно-справочный портал «Проектирование. Изыскания. Строительство».

А.Ю. ЖИГУЛИНА , канд. техн. наук,
Самарский государственный
архитектурно-строительный
университет

В ФЗ № 261 об энергосбережении и повышении энергетической эффективности от 23 ноября 2009 года (далее - «Закон об энергосбережении ») установлены требования энергетической эффективности, перечень объектов энергетического обследования, цели и сроки проведения энергетического обследования зданий, организаций и предприятий промышленности.

В настоящем разделе проанализирована нормативно-законодательная база введения энергетических паспортов зданий. Показано разделение в ФЗ-261 всех зданий на два типа.

  1. Здания бюджетных организаций и предприятий ТЭК, которые должны получить паспорта установленного образца в обязательном порядке.
  2. Для прочих зданий предусмотрена добровольная процедура энергоаудита и выдачи паспортов.

Даны ссылки на форму энергетического паспорта, предусмотренного для обязательного выдачи и документы, определяющие классы энергоэффективности зданий и инженерного оборудования, замечания экспертов по форме и процедурам подготовки энергопаспортов, сведения об административной ответственности за нарушения в сфере энергоэффективности, общие сведения о маркировках и направлениях регулирования основных конструкционных элементов зданий для обеспечения их общей энергоэффективности.

1.1. Мониторинг законодательства в сфере энергоэффективности зданий

В.Л.Гришина - заместитель национального директора проекта ПРООН «Повышение энергоэффективности зданий на Северо-Западе России», директор Северо-Западного филиала ЗАО АПБЭ и ведущий автор «Современные аспекты энергоэффективности зданий в России. Пособие для региональных органов власти» (на момент подготовки настоящего обзора находится в печати) предоставила составителям настоящего обзора возможность использования фрагмента книги, посвященного мониторингу законодательства в сфере энергоэффективности зданий.

В использованном разделе книги дана характеристика полномочий органов государственной власти субъектов Российской Федерации и местного самоуправления в части реализации Закона об энергосбережении, приведены практические Примеры регионального законодательства Санкт-Петербурга (58 Kb) , воспроизведена Статья 9.16 Административного кодекса РФ, содержащая нормы ответственности за нарушение законодательства в РФ в сфере энергоэффективности зданий .

В книге приведена блок-схема, отражающая распределения полномочий в области реализации ФЗ № 261-ФЗ, на которой составителями настоящего обзора выделены полномочия, связанные с энергоэффективностью зданий (73 Kb) , приведена таблица, отражающая всю систему нормативных документов в законодательстве для зданий с эффективным использованием энергии (69 Kb) . Этот материал дает наиболее общую и достаточно полную картину нормативного регулирования в данном направлении.

1.2. Энергетические обследования - объекты и цели

Энергетическое обследование (энергоаудит) проводится для определения класса энергетической эффективности здания и сооружения, оценки его соответствия требованиям программы энергоэффективности. «Закон об энергосбережении» предусматривает энергогаудит следующих видов сооружений:

  • административных зданий;
  • сооружений и промышленных объектов;
  • многоквартирных домов;
  • жилых и общественных зданий.

Основными целями энергетического обследования являются:

  • получение объективных данных об объеме используемых энергетических ресурсов;
  • определение показателей энергетической эффективности;
  • определение потенциала энергосбережения и повышения энергетической эффективности;
  • разработка перечня типовых, общедоступных мероприятий по энергосбережению и повышению энергетической эффективности и проведение их стоимостной оценки;
  • составление энергетического паспорта объекта.

1.3. Обязательное и добровольное энергетическое обследование

«Закон об энергосбережении» устанавливает обязательное энергетическое обследование зданий и сооружений органов государственной власти и топливно-энергетических предприятий, а также организаций, осуществляющих регулируемые виды деятельности в срок до 31 декабря 2012 года с последующим проведением периодического энергетического обследования не реже одного раза каждые пять лет. В дополнение к этому «Закон об энергосбережении» обязывает ответственных лиц (застройщика, собственника здания) обеспечить соответствие вводимых в эксплуатацию, ремонтируемых или прошедших капитальный ремонт зданий нормам энергетической эффективности и требованиям оснащенности их приборами учета потребляемых энергетических ресурсов. За несоблюдение требований, установленных в «Законе об энергосбережении», предусмотрен ряд штрафных мер административного характера.

1.7. Энергоэффективность зданий - роль ограждений, материалов и инженерных систем

Опыт стран Европы показывает, что существенно повысить энергоэффективность строящихся и существующих зданий и получить высокую оценку по результатам энергетического аудита позволяет использование современных материалов, оборудования и технологий.

Значительная экономия энергии достигается при эксплуатации современных инженерных систем. Вице-президент «АВОК» А.Л. Наумов в своей презентации «Подход к определению класса энергоэффективности здания» (1.1 Mb) продемонстрировал потенциал энергосбережения при использовании в зданиях наиболее эффективного инженерного оборудования.


Наиболее энергоемким инженерным оборудованием являются насосы, вентиляционные установки и холодильные машины.

Статья 9.16 Административного кодекса РФ

  • Несоблюдение при проектировании, строительстве, реконструкции, капитальном ремонте зданий, строений, сооружений требований энергоэффективности и оснащения приборами учета - штраф для юридических лиц от 500 до 600 тысяч рублей.
  • Несоблюдение лицами, ответственными за содержание многоквартирных домов, требований энергоэффективности, - штраф для должностных лиц от 5 до 10 тысяч рублей, для юридических лиц - от 20 до 30 тысяч рублей.
  • Несоблюдение лицами, ответственными за содержание многоквартирных домов, требований о разработке предложений по энергосбережению - штраф для должностных лиц от 5 до 10 тысяч рублей, для юридических лиц - от 20 до 30 тысяч рублей.
  • Несоблюдение организациями, обязанными осуществлять деятельность по установке, замене, эксплуатации приборов учета, требований о предоставлении предложений по оснащению приборами учета, - штраф для юридических лиц от 100 до 150 тысяч рублей.
  • Несоблюдение собственниками нежилых зданий, строений, сооружений в процессе их эксплуатации требований энергетической эффективности, - штраф для юридических лиц от 100 до 150 тысяч рублей.
  • Несоблюдение сроков обязательного энергетического обследования - штраф для юридических лиц от 50 до 250 тысяч рублей.
  • Несоблюдение требований о представлении копии энергетического паспорта - штраф для юридических лиц 10 тысяч рублей.
  • Несоблюдение организациями с участием государства или муниципального образования, а равно организациями, осуществляющими регулируемые виды деятельности, требования о принятии программ в области энергосбережения, - штраф для юридических лиц от 50 до 100 тысяч рублей.
  • Размещение заказов на поставки товаров, выполнение работ, оказание услуг для государственных или муниципальных нужд, не соответствующих требованиям их энергетической эффективности, - штраф для юридических лиц от 50 до 100 тысяч рублей.
  • Необоснованный отказ или уклонение организации, обязанной осуществлять деятельность по установке, замене, эксплуатации приборов учета, - штраф для юридических лиц от 50 до 100 тысяч рублей.

«В существующих нормативных документах энергоаудит - это заполнение энергетического паспорта установленной формы. Наличие отчета, выполнение замеров на объекте, проработка энергосберегающих мероприятий никак не регламентируются и не являются обязательным. Энергопаспорт для среднего бюджетного учреждения (без филиалов) требует обязательного заполнения порядка 1600‑1700 полей, подавляющее большинство которых численные. То есть нужно получить у заказчика информацию и вписать ее в нужную клеточку паспорта. Предположим, вся информация у заказчика имеется и на поиск и преобразование информации для одного поля требуется всего 10 мин. В этом случае для заполнения энергетического паспорта одного учреждения необходимо 30‑40 рабочих дней. В чем же ценность данного объемистого документа? Как можно проверить правильность сведений, занесенных в энергопаспорт?

Проверить энергопаспорт абсолютно невозможно, поскольку его основное содержание - это первичная информация заказчика. Для типовых бюджетных учреждений смысл энергетического паспорта сводится к определению расхода энергоресурсов на условную единицу (на одного ученика, одного больного и т. д.). Эти величины абсолютно несопоставимы для разных учреждений. Формат энергопаспорта рассчитан на предприятия масштаба «Уралмаша» и АвтоВАЗа, а применяется к детским садикам».

Под тепловой защитой зданий понимают теплозащитные свойства совокупности наружных и внутренних ограждающих конструкций, обеспечивающих заданный уровень расхода тепловой энергии на отопление при оптимальных параметрах микроклимата его помещений. Под энергетической эффективностью зданий понимают теплотехнические и энергетические параметры здания (совокупность теплозащиты и инженерных систем), которые позволяют обеспечивать нормируемое энергопотребление. Для оценки энергетической эффективности зданий должны быть определены критерии энергоэффективности и выявлены способы их достижения.

До недавнего времени критерии оценки энергоэффективности зданий и их численных значений в нормах отсутствовали. Такая возможность появилась в результате разработки и утверждения нового СНиП 23-02-2003 "Тепловая защита зданий". Какие основные особенности нового СНиП и критерии по тепловой защите зданий? Что такое классы зданий по энергетической эффективности? Каковы способы достижения заданной энергоэффективности зданий? На эти и другие вопросы отвечает в своей статье заведующий лабораторией энергосбережения и микроклимата зданий НИИ Стройфизики РААСН Юрий МАТРОСОВ.

КРИТЕРИИ ТЕПЛОВОЙ ЗАЩИТЫ

Установлены две группы обязательных к исполнению взаимосвязанных критериев тепловой защиты здания, а также два способа проверки на соответствие этим критериям. Они основаны на:

а) нормируемых значениях сопротивления теплопередаче для отдельных ограждающих конструкций тепловой защиты здания, рассчитанных на основе нормируемых значений удельного расхода тепловой энергии на отопление и сохранившихся от прежнего СНиП П-3-79*. Нормируемые значения сопротивления теплопередаче установлены по видам зданий и помещений, а также по отдельным ограждающим конструкциям. Они определяются по табличным значениям или по формулам, установленным в зависимости от градусо-суток отопительного периода в районе строительства;

б) нормируемом удельном расходе тепловой энергии на отопление здания, позволяющем варьировать теплозащитные свойства ограждающих конструкций зданий (за исключением производственных зданий) с учетом выбора систем поддержания микроклимата и теплоснабжения для достижения нормируемого показателя. Нормируемые значения удельного расхода тепловой энергии не зависят от района строительства, поскольку они отнесены к градусо-суткам отопительного периода. В таблице 1 приведены нормированные значения этого показателя.

Способ, по которому будет вестись проектирование, выбирает проектная организация или заказчик. Методы и пути достижения этих нормативов выбираются при проектировании.

Новые нормы гармонизированы с международными стандартами. В частности, согласованы показатели энергоэффективности с требованиями законов (директив) Европейского Содружества (директивы 2002/91/ЕС и 93/76 SAVE).

Выбор отдельных элементов теплозащиты начинают с определения расчетной удельной потребности тепловой энергии на отопление, анализируя влияние отдельных составляющих на тепловой баланс и выделяя элементы теплозащиты, где происходят наибольшие потери тепловой энергии. Затем для выбранных элементов теплозащиты и системы отопления и теплоснабжения разрабатывают конструктивные и инженерные решения, обеспечивающие нормируемое значение удельной потребности тепловой энергии на отопление здания.

КЛАССИФИКАЦИЯ ЗДАНИЙ ПО ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ

В таблице 2 представлена классификация зданий по степени отклонения расчетных или измеренных нормализованных значений удельных расходов тепловой энергии на отопление здания от нормируемого значения. Эта классификация относится как к вновь возводимым и реконструируемым зданиям, проекты которых разработаны в соответствии с требованиями норм, описанных выше, так и к эксплуатируемым зданиям, построенным по нормам, действовавшим до 1995 г.

К классам А, В и С могут быть отнесены здания, проекты которых разработаны по новым нормам. В процессе эксплуатации энергетическая эффективность таких зданий может отличаться от данных проекта в лучшую сторону (классы А и В) в пределах, указанных в таблице. В случае выявления класса А и В, органам местного самоуправления или инвесторам рекомендуется применить мероприятия по экономическому стимулированию. Например, в Москве в мае 2005 г. распоряжением первого заместителя премьера Правительства Москвы Владимира Ресина утверждено "Положение о стимулировании проектирования и строительства энергоэффективных зданий, выпуске для них энергосберегающей продукции".

Классы D и Е относятся к эксплуатируемым зданиям, возведенным по действующим в период строительства нормам. Класс D соответствует нормам, действовавшим до 1995 г. Эти классы дают информацию органам местного самоуправления или собственникам зданий о необходимости принятия срочных или менее срочных мероприятий, направленных на улучшение энергетической эффективности. Так, например, для зданий, попавших в класс Е, необходима срочная реконструкция сточки зрения энергетической эффективности.

ПРЕИМУЩЕСТВА ВТОРОГО СПОСОБА

Выбор уровня теплозащиты для отдельных элементов наружных ограждений зданий осуществляют таким образом, когда комбинация этих уровней приводит к одному главному результату - удельному расходу в тепловой энергии на отопление. Это означает, что уровень теплозащиты для отдельных наружных ограждающих конструкций может быть ниже, равным или выше поэлементного уровня, установленного в нормах. Другая возможность - это компенсация пониженного по сравнению с поэлементным уровнем теплозащиты для одних элементов ограждающих конструкций повышенным для других. Например, для 10-этажного трехсекционного жилого здания в Екатеринбурге применена конструктивная схема - каркас с заполнением стен из легкого бетона. При выборе величины нормируемого сопротивления теплопередаче для стен по первому способу получим 3, 57 м2*°С/Вт, а по второму способу - 2, 57 м2.°С/Вт. Такое снижение нормируемого значения сопротивления теплопередаче получено за счет учета дополнительных факторов, влияющих на расход энергии на отопление. При этом удельная потребность в энергии по расчету 71, 3 кДж/(м2*°С*сут) при нормативе 72 кДж/(м2*°С*сут).

Такая возможность получается потому, что учитывается влияние факторов, которые не берутся в расчет при поэлементном нормировании. Например, объемно-планировочные решения, в частности ширина здания, оказывают существенное влияние на потребность в тепловой энергии. В СНиПе приведены рекомендуемые значения соотношений площадей внутренних поверхностей наружных ограждающих конструкций к замкнутому в них объему, при которых будут получаться энергоэффективные компоновки зданий. Эти требования являются рекомендуемыми, и поэтому они не ограничивают выбор архитектурных решений. В случае, если архитектурное решение здания не энергоэффективное, то следует выбрать повышенные требования к теплозащите, с тем чтобы компенсировать эту расточительность.

Немаловажную роль играет ориентация здания. При более удачном выборе ориентации здания становится более существенным влияние солнечной радиации, поэтому в этом случае уровень теплозащиты как в целом, так и по отдельным элементам может быть снижен.

Из приведенных примеров видно, что достичь требования СНиП можно различными путями или их комбинациями. СНиП стимулирует проектировщика к поиску наиболее выгодных комбинаций. Например, при проектировании поставлена задача: установить новый уровень теплозащиты для | наружных стен на 30 % ниже " уровня, установленного при поэлементном нормировании. Такую задачу при использовании второго способа возможно решить несколькими путями. Первый путь - выбрать более эффективное объемно-планировочное решение, увеличив ширину здания с 12 до 16 м. Если этого будет недостаточно, то можно попытаться установить повышенный по сравнению с поэлементным уровень теплозащиты для чердачных или цокольных перекрытий. Или же провести замену окон на более энергоэффективные либо снизить площадь остекленности фасада здания. Другой способ - использование децентрализованной системы теплоснабжения, например газовой котельной, установленной на крыше здания, вместо подключения к централизованной системе теплоснабжения.

КОНТРОЛЬ ПАРАМЕТРОВ И ЭНЕРГЕТИЧЕСКИЙ АУДИТ ЗДАНИЙ

Новый СНиП потребовал осуществлять контроль качества теплоизоляции каждого здания при приемке его в эксплуатацию методом термографического обследования согласно ГОСТ 26629. Такой контроль поможет выявить скрытые дефекты и устранить их до ухода строителей со строительного объекта. Также новый СНиП потребовал осуществлять выборочный контроль воздухопроницаемости помещений зданий согласно новому ГОСТ 31167.

В новом СНиПе также содержатся указания по контролю теплотехнических и энергетических параметров при эксплуатации зданий. Контроль параметров осуществляют с помощью энергетического аудита по новому ГОСТ 31168.

Энергетический аудит здания определяется как последовательность действий, направленных на определение энергетической эффективности здания. Результаты энергетического аудита являются основой классификации и сертификации зданий по энергоэффективности.

В новом СНиПе предусмотрена обязательная разработка нового раздела проекта зданий "Энергоэффективность". В этом разделе должны быть представлены сводные показатели энергоэффективности проектных решений в соответствующих частях проекта здания. Сводные показатели энергоэффективности должны быть сопоставлены с нормативными показателями действующих норм. Указанный раздел выполняется на утверждаемых стадиях предпроектной и проектной документации. Разработка этого раздела осуществляется проектной организацией. Органы экспертизы должны осуществлять проверку соответствия нормам предпроектной и проектной документации в составе комплексного заключения.

ВЫБОР КОНСТРУКТИВНЫХ РЕШЕНИЙ, ОБЕСПЕЧИВАЮЩИХ НЕОБХОДИМУЮ ТЕПЛОЗАЩИТУ ЗДАНИЙ

Ограждающие конструкции зданий должны обеспечивать нормируемое сопротивление теплопередаче с минимумом теплопроводных включений и герметичностью стыковых соединений в сочетании с надежной пароизоляцией, максимально сокращающей проникновение водяных паров внутрь ограждения и исключающей возможность накопления влаги в процессе эксплуатации. Ограждающие конструкции должны обладать необходимой прочностью, жесткостью, устойчивостью, долговечностью. С внутренней и наружной сторон они должны иметь защиту от внешних воздействий. Кроме того, они должны удовлетворять общим архитектурным, эксплуатационным, санитарно-гигиеническим требованиям.

Необходимый приток воздуха должен обеспечиваться через специальные регулируемые приточные отверстия в стенах, располагаемых либо в светопрозрачных конструкциях, либо в стенах, а также частично за счет воздухопроницаемости светопрозрачных конструкций. Вытяжка воздуха, как правило, осуществляется за счет системы вентиляции с естественным побуждением.

Одним из примеров применения новых материалов являются модифицированные легкие полистиролбетоны. Этот материал имеет преимущества с теплотехнической точки зрения для создания энергоэффективных ограждающих конструкций.

Наша позиция: все материалы и конструкции из них имеют полное право на существование. Необходимо знать их свойства, находить рациональную область их применения и правильно их использовать с теплотехнической точки зрения. С этой целью был разработан свод правил СП 23-101-2004 "Проектирование тепловой защиты зданий".

НАША СПРАВКА

Зачем нужен энергетический паспорт здания?

Назначение паспорта - доказать энергетическое качество здания (проекта, возведенного или эксплуатируемого) и его соответствие нормативным требованиям.

При использовании компьютерной версии энергетического паспорта значительно упрощаются расчеты энергетического баланса и выбор наиболее оптимальных вариантов тепловой защиты, используя методологию "что - если?", когда необходимо найти значение параметра, например нормируемого значения сопротивления теплопередаче наружной стены , при котором значение целевой функции удельного энергопотребления стало равным требуемому значению.

Энергетический паспорт дает потенциальным покупателям и жильцам конкретную информацию о том, что они могут ожидать от энергетической эффективности здания. Более энергоэффективным зданиям может отдаваться предпочтение, поскольку в них размер платежей за энергию значительно ниже. Энергетический паспорт удобен также для обоснования льготного налогообложения, кредитования, дотаций для объективной оценки стоимости жилой площади на рынке жилья и т.п.